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Abstract
With the development of deep learning, a higher level of perception of the environment such as the semantic level can be
achieved in the simultaneous localization and mapping (SLAM) domain. However, previous works did not achieve a natural-
language level of perception. Therefore, LP-SLAM (Language-Perceptive RGB-D SLAM) is proposed that leverages large
language models (LLMs). The texts in the scene can be detected by scene text recognition (STR) and mapped as landmarks
with a task-driven selection. A text error correction chain (TECC) is designed with a similarity classification method, a
two-stage memory strategy, and a text clustering method. The proposed architecture is designed to deal with the mis-detection
and mis-recognition cases of STR and to provide accurate text information to the framework. The proposed framework takes
input images and generates a 3D map with sparse point cloud and task-related texts. Finally, a natural user interface (NUI)
is designed based on the constructed map and LLM, which gives position instructions based on users’ natural queries. The
experimental results validated the proposed TECC design and the overall framework. We publish the virtual dataset with
ground truth, as well as the source code for further research. https://github.com/GroupOfLPSLAM/LP_SLAM.

Keywords Simultaneous localization and mapping (SLAM) · Large language model (LLM) · ChatGPT · Natural user
interface (NUI)

Introduction

Simultaneous localization and mapping (SLAM) is a
perception-based problem in robotics that involves construct-
ing a map of an unknown environment while simultaneously
determining the robot’s position in real-time. Traditional
SLAMalgorithms rely on sensors such as radars [1] and cam-
eras [2–4] to build a geometric model of the environment and
estimate the robot’s pose.

Traditional visual SLAM algorithms extract the geome-
try features from the scene, including feature points [5–7],
feature lines [8, 9], feature planes [10, 11], or the combi-

B Chun Zhang
zhangchun@tsinghua.edu.cn

B Qiang Li
liqiang_hn_cn@hotmail.com

1 School of Integrated Circuits, Tsinghua University, Haidian,
Beijing 100084, China

2 Group TAMS, Informatics and Natural Sciences Department
of Informatics, Faculty of Mathematics, University of
Hamburg, Vogt-Kölln-Straße 30 D, 22527 Hamburg, Germany

nations of the above. The feature points, lines, and planes
can be classified into the "Geometry level" information of
the scene, as shown in Fig. 1a. Emerging neural network
technology [12–14] enhances SLAM systems with higher-
level, semantic information, as depicted in Fig. 1b. The object
detection algorithms can detect and recognize the distin-
guished objects in the correct classification [15, 16]. The
detected objects can be leveraged in mapping and localiza-
tion. In work [17], the dynamic objects are detected to help
remove the dynamic features, which decreases the accuracy
of the system. In work [18], the detected objects are con-
structed and inserted as landmarks into the map. Semantic
segmentation assigns a classification label to each image
pixel, offering more precise information for SLAM systems.
In work [19], DS-SLAMwas proposed to use semantic infor-
mation for mapping, object recognition, and outlier filtering.
In addition, semantic information was used to estimate the
camera pose inwork [20]. In another work, an object co-view
was constructed with the semantic information for checking
loop candidates based on the underlying geometric features
during the loopback detection phase [21]. In previous works,
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Fig. 1 Classification of features in different levels

semantics offer high-level feature information that improves
localization accuracy, masks dynamic feature points, and
assists in bundle adjustment (BA) and loop closure detec-
tion in SLAM.

Text is another type of complex feature that SLAM can
extract, as shown in Fig. 1c. Several attempts have beenmade
to use text for navigation and location. Rong et al. [22] built a
text-assisted visual-inertial navigation system for blind peo-
ple, which recognizes and tracks the pre-defined texts in a
template-based method. Wang et al. [23] used SLAM to
extract planar tiles, integratedmultiple observations to detect
text, and then fused the consecutive detections. In 2015, the
same team proposed a "junction" descriptor for text spotting,
integrated into real-timeSLAM,which improves localization
and text identification [24]. Li et al. [25] developed a text-
based visual SLAMmethod that uses detected text as a planar
featurewith three parameters and illumination-invariant pho-
tometric error, resulting in more accurate 3D text maps for
robotic and augmented reality applications. In [26], Tong et
al. proposed a SLAM system with STR to extract the house
numbers in the scene. The detected texts are labeled on the
constructed map.

Current text-based SLAM systems have failed to utilize
text information and only focus on the planar geometry of
texts rather than their actual meaning. Thus the text informa-
tion is used merely as one special geometry feature. These
limitations are due to: (1) The robustness of STR falls short in
providing pure and accurate information for SLAM systems.

(2) The system lacks the capability to comprehend texts. Two
cases of STR error often happen: mis-detection and mis-
recognition. Mis-detection is the case where some text-like
patterns in the scene are detected as text, thus becoming an
outlier. Mis-recognition is the case where the detected texts
are wrongly recognized, with spelling errors. Both two errors
will severely decrease the mapping and understanding of the
scene texts. With the development of LLMs models [27–29],
SLAM systems can achieve a much higher understanding of
the texts in the scene. The rich prior knowledge of LLMs
also provides a new solution to unavoidable STR errors. In
this work, LP-SLAM is proposed exploiting LLMs to deal
with both challenges as mentioned before. Compared with
the text-based SLAM systems above, LP-SLAM can extract
the texts accurately, understand the texts, and use the text
information according to the task and human queries. There-
fore, the proposed LP-SLAM has a natural-language-level
perception of the texts, instead of geometry-level in previous
text-based works. The contributions of LP-SLAM include:

(1) A Large language model is introduced in the SLAM sys-
tem first time and the proposed LP-SLAM has the ability
of language perception during the construction of the
map. The texts in the scene are extracted and understood
to form a map with selected texts at the correct positions.
A NUI is designed leveraging the LLM to bridge the
users’ query and the constructed maps, providing posi-
tion instructions according to the specific demand.

(2) A TECC is proposed to deal with mis-detection and
mis-recognizing cases, inspired by human cognition.
The TECC includes three modules: (a) Similarity clas-
sification to tolerant the mis-recognition cases at the
beginning of processing. (b) Two-stage memory strategy
is employed to deal with the mis-detection cases, which
is inspired by human’s long-short memory. (c) Text-
clustering to eventually solve the mis-recognition cases,
where LLM is leveraged to correct the mis-recognized
texts.

(3) The results based on the environments validated the
proposed framework and TECC and showed that our LP-
SLAM has the potential to enhance autonomous robots’
ability to interact with their environment more naturally
and intuitively.

Research background

Visual SLAM

Visual SLAM exclusively uses vision for external sensory
perception. MonoSLAM [30] was the first real-time visual
SLAM system that employed a monocular camera and
Extended Kalman Filter (EKF) to estimate camera location
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and construct a sparse 3D map. PTAM [31] was proposed as
the first SLAM system that has utilized graph optimization
instead of filtering. PTAM’s keyframe approach achieved
superior performance with lower cost, and it introduced
the concept of front-end tracking and back-end optimiza-
tion to improve efficiency. ORB-SLAM [32], which has
used FAST corner points and Oriented Brief (ORB) descrip-
tors, running speed and accuracy have been improved as
compared to PTAM.Additionally,ORB-SLAMincorporated
Loop Closure Detection to optimize the map’s pose and
reduce accumulated drift errors.ORB-SLAM2 [2] extended
the framework to support binocular and RGBD cameras,
while also adding a pre-processing module in the tracking
thread to handle more information from these devices, thus
improving precision. Furthermore, it introduced full BA to
rectify themap and added a localizationmode.ORB-SLAM3
[33] is the latest release of the series and supports an even
wider range of equipment and functions, such as pinhole,
fisheye, andvisual-inertial odometry. It is amulti-map system
that creates a new map when VO is lost, and automatically
merges with the previous map when the scene is recovered.
ORB-SLAM3 has demonstrated robustness comparable to
state-of-the-art systems while achieving higher precision. In
recent years, SLAM systems using direct methods were also
developed [34, 35] and showed advantages in efficiency. The
algorithms leveraging machine learning also achieve higher
accuracy. There are two ways to introduce machine learning
into SLAM system. The modules such as feature extrac-
tion, feature matching, and loop closing can be replaced by
machine-learning-based modules [36, 37], which improves
the overall accuracy of the system. The machine learning
algorithms can also be side-loaded along with SLAM to pro-
vide more information to the original system, such as object
detection and semantic segmentation. Someworks have used
STR to extract the text information to help in localization as
mentioned above. However, the previous systems could not
get an understanding of the texts or only judged them as spe-
cial geometry-level information. In this work, encouraged
by the emerging LLMs, the potential of text information in
SLAM system is explored.

Scene text recognition

The fundamental technology of our system is STR, which
detects and recognizes scene texts. There are many text
recognition approaches have been proposed but, Convo-
lutional Recurrent Neural Network (CRNN) [38], which
combines convolutional neural network (CNN), recurrent
neural network (RNN), and connectionist temporal classi-
fication (CTC), has shown promising results in recognizing
text in natural scenes. CNNs are used to extract features from
the input images. The output is then fed into a bidirectional
long-short-term memory (LSTM) layer to generate feature

sequences and the network uses a CTC module to decode
the sequence into corresponding text output. ASTER [39]
is a recognition network based on the attention mechanism
that can capture the spatial relationships between characters
and recognize text accurately. The attention mechanism is
beneficial for text recognition in natural scenes, where the
text can appear at different scales, orientations, and posi-
tions in the image. Semantic reasoning network (SRN) [40]
introduces a global semantic reasoning module (GSRM) to
capture context, which is more robust and efficient than tra-
ditional methods. Meanwhile, SRN can be trained in an
end-to-end approach and achieve state-of-the-art on multi-
ple benchmarks.

Though STR has been largely developed in the past years,
the accuracy in large-scale scenes is still not high enough for
our proposed LP-SLAM. Twomajor errors appear frequently
and severely influence further processing and understand-
ing. Mis-detection stands for the case where some text-like
objects in the scene are judged as texts, and some non-sense
texts are extracted from them. Mis-recognition stands for the
case where the correctly detected texts are judged into texts
with spelling errors. Traditional algorithms are unable to rec-
ognize the errors due to the lack of prior knowledge of the
world. However, trained by sufficient language data, LLM
can correctly judge the errors and even correct them. In this
work, the LLM is used as a key components to deal with the
STR errors.

Large languagemodel

A large language model (LLM) is a type of artificial intel-
ligence (AI) system designed to process natural language
and generate coherent, contextually appropriate responses to
user inputs. LLMs are typically based on deep learning algo-
rithms that are trained on massive datasets of text, allowing
them to recognize patterns and relationships in language and
generate highly accurate and relevant responses. One of the
earliest examples of a large language model was the Sta-
tistical Language Model (SLM) [41], which was developed
in the 1990s. This model was based on statistical techniques
such as n-grams [42] andmaximum likelihood estimation and
was used for tasks such as speech recognition and machine
translation. The most popular Large Language Models in
use today are based on the Transformer architecture [43].
The Transformer architecture incorporates the self-attention
mechanism, which allows the model to attend to various
parts of the input sequence and capture complex relationships
between them. The Transformer architecture offers several
advantages over traditional RNNs and CNNs. It can pro-
cess sequences in parallel, which makes it more efficient
than RNNs and CNNs. It also enables the model to capture
long-range dependencies and relationships between words
and phrases, which is essential for natural language process-
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ing applications, such as language translation and language
modeling.

GPT-3 (Generative Pre-trained Transformer 3) [28] is one
of the largest and most powerful language models to date,
with 175 billion parameters. GPT-3 was trained on a massive
corpus of text data, including web pages, books, and articles,
and can generate highly coherent and fluent text. Its advanced
capabilities have significant implications for the field of nat-
ural language processing and offer exciting opportunities for
applications in areas such as chatbots, content generation,
and language translation.

LLMs have exhibited their power in natural language pro-
cessing, facilitating robots in comprehending and responding
to human commands with increased human-like proficiency
[44]. This multifaceted nature of LLMs enables a more pro-
found integration of linguistic comprehension and contextual
understanding within the robotic domain [45]. Introduces
an LLM-based approach to translate natural language com-
mands into linear temporal logic (LTL) specifications for
robot tasks [46]. Finds that when pairedwith LLMs to decon-
struct complex natural language instructions into subgoals,
their robots accomplish intricate, multi-tier tasks in real-
world scenarios.

The essence of efficient task planning and scheduling lies
in the ability to comprehend and interpret intricate instruc-
tions and commands, alongside the capability to strategize
and allocate resources effectively. LLMs enable robotic sys-
tems to ingest and comprehend diverse sets of data, ranging
from textual instructions to real-time environmental cues, and
subsequently formulate optimized task plans and schedules
[47]. Introduces a scene representation framework integrat-
ing contextual information into LLMs planners through
VLMs, enabling robots to generate context-aware plans in
real-world tasks without predefined object lists or fixed exe-
cutable options [48]. Proposes a programmatic LLMsprompt
structure for generating context-aware plans, demonstrating
improved success rates in household and tabletop tasks across
virtual and physical environments.

LLMs also have some other applications in the robotics
field, such as the development of dialog agents and visual
grounding [49]. Introduces a multisensory perception
approach for robotic manipulation, emphasizing the coor-
dination of visual, tactile, and auditory perception to handle
complex situations, accompanied by a user-friendly mobile
app based on LLMs [50]. Presents an interactive visual
grounding system that effectively handles open-world scenes
with ambiguous natural language instructions, through its
integration of large-scale vision-language models and tradi-
tional decision-making processes.While SLAM is becoming
one critical module in autonomous robots, the potential of
LLMs in SLAM is not explored yet.

Proposedmethods

Overall framework

The overall framework of LP-SLAM is shown in Fig. 2. LP-
SLAM has 4 parts: geometry feature based SLAM, runtime
text mapping, distilling, and natural user interface. Three
modules leverage LLM and are marked as red.

The geometry feature based SLAM has four typical mod-
ules including tracking, local mapping, loop closing, and full
BA. It estimates the pose for each frame and generates point
cloud for the map. The estimated pose Twc will be used to
calculate the position of texts in the 3D world coordinates.
In this work, ORB-SLAM3 is used as the base SLAM sys-
tem. The tracking module runs in a frontend thread while the
other modules run in backend threads. Thus tracking module
runs in real-time and other modules do not require real-time
execution.

The whole runtime text mapping part is executed along
with the tracking module of the SLAM system in real-time.
The input RGB image is firstly processed by the deep neural
network (DNN) based scene text recognition (STR) module
to extract the set of visible texts Ti = ti1, ti2, ..., tin , where
tin denotes the n − th text in the i − th image. The corre-
sponding 2D pixel position of each text is set as the center
of the detection box. One text may appear in many frames
and the extraction results (both content and position) dif-
fer in frames due to the limited accuracy of STR. The texts
extracted from the same object in the real-world scene in dif-
ferent frames are called homologous texts. One real-world
text object will produce many homologous texts, some of
which have spelling errors (mis-recognition). The 2D pixel
positions of homologous texts also differ due to the change
of viewpoint andmeasurement error. There aremis-detection
cases when some textures in the scene are similar to texts. In
these cases, meaningless texts will be produced. To process
the homologous texts, anddealwithmis-recognition andmis-
detection, TECC is proposed and used after the STR. TECC
includes three modules: similarity classification, two-stage
memory, and text clustering. The TECC modules will be
discussed in detail in the following subsections. The TECC
modules will finally generate the accurate text item for each
group of homologous texts, correcting the spelling errors.
The mis-detection cases will also be deleted.

The distilling part, containing two functions, is executed
along with or after runtime text mapping. The text items
generated by TECC are judged whether are task-relevant
leveraging LLM. The texts that are not task-relevant will be
discarded. Position clustering is performed on the reserved
items to generate the corresponding positions in the 3Dworld
coordinates by clustering algorithms from the stored posi-
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Fig. 2 Overall framework of
LP-SLAM
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tions. The items will be inserted in the 3D world map at the
corresponding position. The point cloud & text map is thus
constructed With the text items, and the geometry feature
points calculated by the tracking module of the base SLAM
system.

The navigation part is executed after the above two parts
when the point cloud & text map is established. The query
from users in natural language is input and processed by
LLM to understand the users’ demand. Then LLM provides
position instructions according to the map and the demand,
which can be used for the follow-up navigation algorithms.

Text error correction chain (TECC)

Similarity classification

Similarity Classification serves two major functions: (1)
Classify the homologous texts from the same source into one
group for further processing. (2) Tolerate themis-recognition
cases of STR. The STR may identify minor errors in the
characters of some source text, resulting in the potential
for multiple items from the same source text. In this paper,
we modified the Levenshtein Distance algorithm [51] with
normalization to measure the distance between texts. The
Levenshtein distance algorithm employs the concept of back-
tracking in the comparison process, allowing for recursive
operations. For the comparison between two strings A and B
of lengths m and n, the matrix D[n+1][m+1] is constructed.
This matrix is populated by circulating through each cell
D(i,j) and calculating its correspondingvalue. The state trans-
fer equation is as (1) and (2):

D(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if i = 0, j = 0

j, if i = 0, j > 0

i, if i > 0, j = 0

Min, if i > 0, j > 0

(1)

Min = 1+min

⎧
⎪⎨

⎪⎩

D(i − 1, j)

D(i, j − 1)

D(i − 1, j − 1)− k

(2)

where k=1 when the last letters of the two strings are
the same else k=0. After recursive calculation, the final
D(n+1,m+1) is the final edit distance length.We utilize (3) to
normalize the edit distance to obtain amore accuratemeasure
of string similarity, regardless of differences in length. This
allows us to establish a uniform threshold for classification.
If two strings are deemed sufficiently similar, they will be
grouped into a single class for further processing by LLM.

Sim(A, B) = 1− D(n + 1,m + 1)

max(m, n)
(3)

The similarity classification is shown in Fig. 3a. The texts
extracted by STR are first processed by the similarity classi-
fication module. This module merges homologous texts into
classes, upon which subsequent memory processes depend.
When a text is extracted and input to the similarity classifi-
cation module, the similarities between the text and current
classes are calculated. If there is one class achieving a sim-
ilarity higher than a threshold, the text is merged into the
class. Otherwise, one new class is created.
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Fig. 3 Similarity classification
and two-stage memory strategy

STR Similarity Text1→Class1

Classified Text 

First-Stage MemoryFirst-Stage Memory

Memory Pool
Second-Stage

Class1
Class1

pos1, pos2,...

ClassN
pos1, pos2,...

…

Text2→Class1

Text4→Class5Text3→Class2
(a)

(b)

Two-stage memory strategy

While similarity classification addresses mis-recognition by
accommodating spelling errors and grouping similar texts
into one class, the mis-detection cases will result in mean-
ingless classes. Two-stage memory strategy is proposed to
filter out those meaningless classes, inspired by human cog-
nition. Themis-detection happens in a low frequency, usually
when one texture in the scene looks similar to text at a certain
point of view.However, as the point of view changes, themis-
detection from one source will no longer happen. In contrast,
texts will be constantly extracted from the real text source as
the point of view changes. In human memory, objects seen
only once or briefly are quickly forgotten, whereas those
encountered frequently or over extended periods are remem-
bered. Two-stage memory strategy mimics this mechanism
to filter out the seldom mis-detection as shown in Fig. 3b.
The first-stage memory calculates the memory magnitude
of all classes. For simplification, the memory magnitude is
closely related to the occurrences of the classes. At each
frame, when a text is assigned to a class, the correspond-
ing memory magnitude for the class increases. To prevent
magnitude overflow, we implemented a fading-out function
that simulates the human brain’s forgetting mechanism. This
function decreases the memory magnitude of all classes in
each frame. Once the memory magnitude for a given cate-
gory reaches the threshold, it is transferred into the long-term
memory, which can later be used for task-relevant judgment
and NUI navigation tasks. Otherwise, when the magnitude
decreases to 0, it will be forgotten from first-stage mem-

ory. In the example of Figs. 2, 4 texts are detected from the
current frame and are merged into three classes. Then the
memory magnitude of each class changes according to the
memory and forgetting mechanism. Then Class1 achieves a
magnitude above the threshold and is stored in the long-term
memory pool. The memory mechanism ensures that low-
frequency mis-detection information is never transferred to
second-stage memory, thereby eliminating the influence of
irrelevant data on the system from the outset.

Text clustering

Even though similarity classification can merge homologous
texts into classes, the issue of selecting the correct word in
each class remains, which is referred to as the "text cluster-
ing problem". This problem is hard to deal with in previous
works. The understanding capability and the prior knowledge
about the world of LLM provide a new solution to the task.
To effectively leverage LLM for text clustering, a prompt
consisting of the mission description and example training is
designed as shown in Fig. 4. Once pre-training of the prompt
is completed, the LLM can be used as a text clustering tool
in multiple languages. In this scenario, LLM is capable of
selecting the most appropriate word in each provided class.
The text clustering function is implemented as the end mod-
ule of TECC to reduce the execution times of LLM, which
requires high computation. The classes filtered by two-stage
memory are fewer and no meaningless classes will be clus-
tered by LLM.

123



Complex & Intelligent Systems

Fig. 4 Pre-train of LLM for text
clustering

Task-relevant selection

Some texts, while meaningful, may not be relevant to the
specific task at hand. For instance,when the task is navigation
in a mall, the slogans are not relevant, while the shop names
are relevant. The irrelevant texts consume storage space and
increase the token length when LLM is used to process the
texts according to human queries in the NUI. Therefore we
propose a landmark judgment realized by LLM to decide
whether a text extracted is task-relevant. The prompt of task-
relevant selection is shown in Fig. 5. The pre-training process
consists of two key components. Initially, we claim the task
that LLM is expected to accomplish and subsequently, we
provide relevant examples to ensure optimal performance.

Position calculation and position clustering

The position of text in world coordinates is determined by
its pixel position from STR and the current camera pose
in SLAM tracking part. When one point is projected onto
the camera image, the point P(xw, yw, zw, 1) is firstly trans-
formed into the camera coordinate:
P (xc, yc, zc, 1) = TCW · P (xw, yw, zw, 1) (4)

where TCW is the 4×4 transformation matrix from world
coordinate to camera coordinate. Then P(xC , yC , zC , 1) is
projected onto the image coordinates as:

⎡

⎣
x
y
1

⎤

⎦ = 1

Zc
·
⎡

⎣
fx 0 0 0
0 fy 0 0
0 0 1 0

⎤

⎦ ·

⎡

⎢
⎢
⎣

xc
yc
zc
1

⎤

⎥
⎥
⎦

def= 1

Zc
· Fc ·

⎡

⎢
⎢
⎣

xc
yc
zc
1

⎤

⎥
⎥
⎦

(5)

Finally, the pixel position is calculated by affine transfor-
mation based on the intrinsic of the camera:

⎡

⎣
u
v

1

⎤

⎦ =
⎡

⎢
⎣

1
dx

0 u0
0 1

dy
v0

0 0 1

⎤

⎥
⎦ ·

⎡

⎣
x
y
1

⎤

⎦ def= Ic ·
⎡

⎣
x
y
1

⎤

⎦ (6)

Inversely, the position P in real-world coordinates can be
calculated from the pixel position (u,v) as:

P (xw, yw, zw, 1) = Zc · Twc · F−1
c I−1

c ·
⎡

⎣
u
v

1

⎤

⎦ (7)

The pixel position of the detected text is calculated as
the average of the four counters of the detection box. Each
class of homologous texts hasmany estimated positions from
different frames in different points of view. The clustering
method is implemented to generate the final position of each
class of homologous texts. For each class, N iterations of
clustering are executed to remove the outliers. In each iter-
ation, the average position is calculated, which is also the
optimum of least squares. Then the 20% farthest points from
the average position are judged as outliers and removed.
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Fig. 5 Pre-train of LLM for
task-relevant selection

Natural user interface

Different navigation algorithms are implemented on the
constructed map of SLAM systems. However, the current
algorithms focus on route planning given the start and end
position. Compared with the explicit queries asking position
of specific text, the implicit queries that only give the demand
are more difficult. In this case, the framework should under-
stand the texts and the demands, and logically bridge them.
In this work, we explore the possibility of LLM to understand
both the constructed map and the human queries. The natural
use interface is designed to use the framework in real-time
and natural language. The LLM will take in the text lists of
the map, and give position instructions according to human
queries in natural language. The prompt is shown in Fig. 6.

Experimental results

Real-world experiments

The real-world experiment is conducted in a mock mall
environment containing shops, slogans, and public facilities
shown in Fig. 7. The platform robot is a Roban child-sized
humanoid robot from Leju Robotics with an Intel RealSense
D435i RGBD camera. The ChatGPT−3.5 is used as LLM
in this work. The functionality of the modules will be vali-
dated in real-world experiments, and the thresholds will be
adjusted accordingly for the larger simulation experiments.

Scene text recognition

The result of scene text recognition is illustrated in Fig. 8.
In Fig. 8a, the brand name “KFC” is correctly detected and

recognized. The pixel position of the text is also within the
threshold; thus, the detected text is surrounded by a green
box and is reserved for the following processes. In Fig. 8b,
three texts are detected and recognized. However, they are all
surrounded by a yellow box and will be eliminated. The left
upper is one part of the slogan “No Smoking”, which is not
fully viewed in the current image. The cases where texts are
not fully viewed will be removed. The left bottom text is one
case of mis-detecting, which means that one non-text area is
judged as a text area by the detecting module. The follow-
ing two-stage memory strategy will solve such cases. The
correctly detected text “KFC” is also eliminated because it’s
near the bound of the frame. There are also mis-recognition
cases. For example, “请勿拍打”(Do not beat in English) is
always recognized as ““请切拍打”(Meaningless Chinese
sentence). The similar classification module and class clus-
tering module will solve such cases.

To evaluate the performance of STR and TECC more
accurately, a similarity-frequency-based accuracy calcula-
tionmethod is developed as (8). The accuracy is calculated as
the sum of the frequency-weighted similarity between each
extracted text and the ground truth text. We achieved a stable
character accuracy rate of 83.59% in the STR stage.

acc =
N∑

i=0

Sim
(
text i , groundtruth i

) × freq i (8)

Similarity classification and two-stage memory

Figure 9 displays the results of the similarity classifica-
tion module and two-stage memory strategy module. The
extracted texts from all frames are shown in Fig. 9a, which
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Fig. 6 Prompt for natural user
interface

Fig. 7 Experimental
environment of the mock mall

Fig. 8 Demonstration of correct
and incorrect cases of STR
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Fig. 9 Demonstration results of
similarity classification and
two-stage memory strategy

are disorganized and contain errors due to STR accuracy.
Those texts are processed once extracted during the run-
time and are listed together for result visualization when
the mapping is finished. The classes of homologous texts
are generated as shown in Fig. 9b. The number preceding
each text indicates its frequency, which largely influences
the magnitudes of the subsequent two-stage memory strat-
egy. The magnitudes of each class are stored and adjusted
in first-stage memory as shown in Fig. 9c. The darker col-
ors represent higher magnitudes for classes in blue, while
classes in yellow are occasionally extracted mis-detection
cases. The classes such as class2 (“请切拍打”， wrongly
spelled “Don’t beat”) and class4 (“NoSmoking”) entered the
long-term memory, hile classes such as class3 (“十餐”) and
class7 (“moron”) are eliminated from memory.

The magnitude threshold influences the text extraction
result significantly. If the magnitude is too high, some cor-
rect texts may be discarded. In contrast, the mis-detection
cases will be added to second-stage memory if the mag-
nitude is too low. Two metrics are designed to decide the
magnitude threshold: the miss detection rate (MDR) and the
false detection rate (FDR). The MDR is calculated as the
ratio of wrongly or not detected classes and the number of
expected classes. The FDR is calculated by dividing the num-
ber of expected classes by the number of detected classes.
The analysis of the MDR and FDR across different memory
thresholds is shown in Table 1. Both MDR and FDR drop
to 0 in the range of 25–200, where no expected classes are
missed, and no extra classes are detected. This means all

Table 1 MDR and FDR at different thresholds

Threshold 10 20 25–200 250 300

MDR 0 0 0 8.3% 16.7%

FDR 25.0% 7.6% 0 0 0

the mis-detection and mis-recognition cases are discarded
accurately, and all real texts are successfully extracted. The
functionality of similarity classification and two-stage mem-
ory strategy is validated and it can be observed in Fig. 9.

Text clustering

Figure 10 demonstrates the effectiveness of the text clus-
tering module with LLM, which returns the most rea-
sonable text from a class of homologous texts. In the
first dialog, we present a group of homologous texts with
spelling variations, including [Don’t-Touch], [Dont’tTouch],
[Don’tlouch]. LLM can accurately identify the most rea-
sonable text, which is [Don’t Touch]. The next dialog
demonstrates LLM’s ability to handle different language
texts. All the inputs are in Chinese and contain some spelling
variations of "Pizza Hut". LLM can identify the correct text,
despite the variations in spelling. This showcases the versa-
tility of LLM in handling different languages and its ability
to accurately cluster homologous texts.

Task-relevant selection

The task-relevant selection module in LP-SLAM identifies
whether the texts are relevant to the given task. In our exper-
iment scene, we focus on identifying whether the text stands
for a shop, which is further used for customer navigation. To
simulate real-world street environments, our dataset includes
shop names, warning slogans, and public facilities written
in both English and Chinese, which are generated by text
clustering. As shown in Table 2, LP-SLAM accurately iden-
tifies all the landmarks as shops, and the irrelevant ones that
are warning slogans, such as “请切拍打” (Do not beat, with
one wrongword) and “HIGHTEMPERATURE”. This show-
cases the effectiveness of the Task-relevant Selectionmodule
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Fig. 10 Demonstration results
of text clustering

Table 2 Task-relevant selection results in the real-world scene

Landmark

[KFC], [必胜客欢乐餐厅(pizza hut)],

[ALIENWARE], [HUAWEI], [GUCCI]

Non-landmark

[Donotbeat], [请切拍打(Do not beat, with one wrong

character)], [NoSmoking], [Don’t Touch],

[DANGER], [HIGHTEMPERATURE], [WASHROOM]

in accurately identifying different types of texts, despite the
presence of multiple languages in the dataset.

Overall mapping

The overall mapping is illustrated in Fig. 11. The map is
constructed with the recognized texts and the sparse point
cloud. The blue texts are the ones judged as shops, while the
pink ones are judged as others. The visualized results quali-
tatively validate the accuracy of text extraction, perception,
and localization.

Natural language interface

The NUI of LP-SLAM gives position instructions according
to the constructed map and human queries in multiple lan-
guages. Fig. 12 illustrates how the NUI works in LP-SLAM.
In the first dialog, after presenting a list of landmarks in text
mapping, LP-SLAM understood the user’s request (I do not
like pizza, where can I eat), recommended KFC, and pro-
vided its location for easy navigation.

In the second dialog, when the user asked in English
“Where can I eat pizza?”, LP-SLAM suggested going to “必
胜客欢乐餐厅” (Pizza Hut). This showcases LP-SLAM’s
ability to handle queries in different languages.

The third dialog demonstrates one case in Japanese.When
the user asked in Japanese, “ゲ一ムをするためのパソコ

ンはどこで えますか？” (Where can I buy a computer
for games?), LP-SLAM suggested “ALIENWARE” and pro-
vided its location for easy navigation.

Overall, LP-SLAM’s ability to handle queries in multiple
languages provides an additional advantage for users who
speak different languages or are visiting foreign countries.
The integration of LLM into the system further enhances its
capability to handle complex queries and provide accurate
recommendations.

Visualized comparison

The visualized comparison between the proposed framework
and the relatedworks is shown inFig.13. TheTextSLAM[25]
is shown as Fig. 13a, where the texts are only detected but
not recognized as language information. The extracted texts
are used as special geometry patterns for tracking. The TXS-
LAM [26] is shown as Fig. 13b, where the door numbers are
detected and recognized. However, the numbers are easier
compared with language characters. TXSLAM cannot cor-
rect and analyze the extracted information. There is one error
"770n" in the constructed map. The proposed LP-SLAM is
shownasFig. 13c. LP-SLAMdetects and recognizes the texts
in the scene accuratelywith the help of the proposedTECC. It
also has an outstanding comprehension of the extracted texts
and can judge whether the texts are task-relevant. The judged
texts are shown on the map in different colors. In addition,
the text-map-based guidance is also firstly achieved in the
related works.

Virtual experiments

Though the real-world experiments have validated the pro-
posed method, the quantified results are lacking due to the
absence of ground truth. Thus the virtual experiments are
conducted formore complex environments and the quantified
results. The Unreal Engine and Airsim are used to construct
an environment of a mall with different shops and slogans.
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Fig. 11 Overall mapping result
of the real-world scene

The unmanned aerial vehicle (UAV) is used to explore the
scene recording the RGB-D frames. The overall scene is
shown in Fig. 14, which contains 28 shops and random
non-shop slogans. TheUAVis used to explore thewhole envi-
ronment and the ground-truth trajectory is recorded. Three
goals are to be reached by the LP-SLAM: 1. Constructing the
mapof thewhole environment; 2. Extracting the task-relevant
texts in the scene and mapping them onto the corresponding
position; 3. Understanding the texts and providing instruc-
tions for human users.

Scene and text mapping

The overall mapping is shown in Fig. 15a, where the sparse
point cloud map is constructed. The red points are currently
visible, and the black ones are invisible. The blue rectangles
are the keyframes created during themap construction,which

form one trajectory of the UAV. The zoomed-in patches are
shown in 15b and c, where the texts are detected and inserted
into the map at the correct position. The task-relevant judg-
ment result is also illustrated in 15d, where blue texts are the
ones judged as shop names while green ones are not. The
proposed system successfully judged whether the texts were
shop landmarks or just slogans. During the whole mapping
process, 24,017 texts containing 10,239 different spellings
are extracted from the scene in total, most of which are non-
sense mis-detection and wrongly-spelling mis-recognition
cases. The similarity classificationmodule classifies the texts
into 6077 classes, which is a reasonable number to be pro-
cessed further. The two-stage strategy further filtered out the
outliers and only 54 classes were finally stored in the second-
stagememorypool. Finally, the 23 texts are accurately judged
as task-relevant and saved in the map. Five shops are not
judged into the map, influenced mostly by the logos and tex-
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Fig. 12 Results of responding
to natural language queries

Fig. 13 Visualized comparison
between different algorithms

tures near the text. In the meantime, though toilet is not a
shop, it’s important for navigation in a mall. Thus it’s also
reserved as “卫生间” (Chinese). The processing validates
the functionality to deal with tremendous mis-detection and
mis-recognition.

The trajectory estimation accuracy is shown in Fig. 16.
The estimation error results from the light change, the lack
of distinguished geometry features. The position accuracy
of the texts is shown in Table 3. We recorded the estimated
positions of the texts and the UAV position when each text
was inserted into the map. All the positions of the extracted
texts are calculated accurately within a reasonable error. The
text position error and the trajectory error are calculated
accordingly. The text position error is defined as the distance
between the estimated text position and the true text position.

For each text, the trajectory error is the distance between the
estimated UAV position and the true UAV position. The tra-
jectory error comes from the base SLAM system and has a
direct impact on text position error. The text position error
comes from two reasons: 1. the accumulated error of the basic
geometry-feature-based SLAM system; 2. the error between
the estimated center of the texts and the true center, which is
caused by the STR algorithm; 3. the calculation error from
2D frame to 3D world coordinates.

Response to natural language queries

To validate the ability of the understanding of the constructed
map, different queries in natural language are given and
the system provides the positions to meet the requirements
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Fig. 14 The virtual scene

Fig. 15 The constructed map of
the simulated scene

accordingly. The experiment results are shown in Table 4.
We did three types of experiments in Chinese and English.
The tasks include 1. Simple questions about the position
of a specific shop (Q1–Q5); 2. Queries based on a specific
demand(Q6–Q14), where one or two positions are involved;
3. Distance and semantic-based queries (Q15–Q16). The
results show that the system can understand both human
requirements and the constructedmap, thus further providing
reasonable suggestions.

Computational complexity analysis

The proposed framework leveragesmultiple neural-network-
based modules. PP-OCRv2 [52] is implemented as the STR
module in our experiment. The size of the implemented Pad-
dleOCR model is 155.1M. The text clustering, task-relevant
selection, and natural user interface are executed by Chat-
GPT 3.5. The size of ChatGPT 3.5 is approximately 175B.
The other non-neural-network-basedmodules including sim-
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Fig. 16 The estimated
trajectory error

ilarity classification, two-stagememory, position calculation,
and position clustering have a very low complexity and
account for a very small proportion of the total time.

The STR is implemented offline and the ChatGPT is exe-
cuted online via APIs from OpenAI. Thus the execution
speed of the STR module is restricted by the local hardware
and the LLM-based modules are restricted by the response
time of ChatGPT. The STRmodule and the three LLM-based
modules are executed in two individual threads along with
the tracking thread of SLAM.When a new frame arrives, the
tracking thread and runtime text mapping thread process the
image in parallel. The runtime mapping thread that contains
the STRmodule costs more time than the tracking thread and
thus becomes the bottleneck of the two threads. The distill-
ing thread further processes the texts in a background thread
that is decoupled with the tracking thread. Therefore the dis-
tilling thread will not influence the frame rate. The natural
user interface is executed after the whole mapping process
and also does not influence the frame rate. In our experiment,
the platform is one desktop computer with Intel i7 CPU and
Nvidia 3080ti GPU and the measured frame rate is 25fps,
which meets the requirement of real-time.

Flexibility of the framework

The implemented STR network and LLM networks in the
experiment are replaceable. There are two major consider-
ations when selecting the models. Firstly, the model should
be selected by the functionality. Different STR models are
trained for various languages and various environments such

as cities or villages. The further fine-tuned LLMs are more
suitable for specific tasks in addition to the mall navigation
tasks. The different LLMs are also more capable in different
languages. For example, WenXinYiYan has better accuracy
in a Chinese environment. Secondly, the model size should
be considered according to the target platform. The trade-
off between execution time and accuracy should be designed
based on specific tasks. The base SLAM algorithm is also
replaceable in consideration of accuracy and computation
complexity.

Conclusion

In this work, LP-SLAM is proposed, one natural-language-
level perception SLAM system leveraging LLMs, specif-
ically ChatGPT. LP-SLAM can extract natural-language-
level information from the world, judge the information,
and store the important information. The human cognition-
inspired techniques including similarity classification and
long-short-term memory are designed to achieve better
robustness against mis-detecting and mis-recognition. LP-
SLAM is also capable of providing simple navigation
guidance according to the query of users in different lan-
guages, showing great potential in real applications. While
LP-SLAM illustrates how LLMs improve the perception of
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Table 4 Queries and answers of the nature user interface in simulated scene

Questions Answers

1 特步店铺在什么位置？ (Where
is XTEP, a Chinese sports brand)

特步 (XTEP) (1.34, −3.13, 3.75)

2 斐乐店铺在什么位置？ (Where
is FILA, a Chinese sports brand)

FILA (24.52, −3.09, 4.35)

3 香奈儿店铺在什么位置？
(Where is the Channel)

CHANEL (23.61, −5.43, −0.16)

4 Where is Pizza and More? 必胜客 (Pizza and
More)

(26.43, −4.9, −6.05)

5 Where can I buy an iPhone? iPhone (39.87, −4.44, −5.36)

6 Where can I buy a necklace? Dior (22.86, −4.77, −3.92)

7 Where can I buy a ring? CHANEL (23.61, −5.43, −0.16)

8 我想吃披萨，请问可以去哪里？
(I’d like to have pizza, where can
I go?)

必胜客 (Pizza and
More)

(26.43, −4.9, −6.05)

9 我想买一双运动鞋，请问可以去
哪里？ (I’d like to buy sport
shoes, where can I go?)

Adidas (12.62, −4.66, 3.88)

10 I want to go to Dior and Channel,
can you design a route for me?

Dior
CHANNEL

(22.86, −4.77, −3.92)
(23.61, −5.43, −0.16)

11 我的手机需要维修，请问我应该
去哪里？ (I need to fix my
phone, where can I go?)

Panasonic (19.8, −5.83, −0.19)

12 我想先买一双运动鞋，然后去吃
饭，但我不喜欢吃披萨，请帮
我设计一条路线 (I’d like to buy
sport shoes first, then I will go for
a meal. But I do not like pizza.
Please design a route for me.)

Nike
McDonald’s

(18.54, −1.42, −6.47)
(39.25, −3.73, 3.52)

13 I want to go to the toilet first, then I
would like to buy a bag for my
wife, can you design a route for
me?

卫生间 (Toilet)
Burberry

(43.85, −5.26, 3.05) (29.65,
−5.68, −0.09)

14 I am now at (0, 0, 0), please help
me find the nearest sport shop

特步 (XTEP) (1.34, −3.13, 3.75)

15 我现在在(0, 0, 0)，帮我找到离
我最近的餐厅 (I am at (0, 0, 0),
please help me find the nearest
restaurant.)

必胜客 (Pizza and
More)

(26.43, −4.9, −6.05)

SLAM to brand new natural language level, there are still
further works to be researched. For instance, topics includ-
ing how language information can help in the accuracy and
efficiency of the SLAM threads are potential fields. In addi-
tion, there are further works to be explored: 1. The instruction
texts such as signpost can provide more information, which
can be used to enrich the ability of the SLAM system. 2. The
extracted texts may help to improve the mapping accuracy.
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