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Abstract
The regular admittance controller cannot be easily transferred to the physical human–robot interaction scenario because of 
the dynamic stiffness of the human arm. The dynamic interaction of humans can cause high frequency and unsafe oscillation 
of the robot arm. Based on the adaptive control scheme, this paper presents an online sensory-based analytical approach 
to recognize and quantify the “stability index" named as a robust haptic observer. The observer performs the Fast Fourier 
Transform on the interaction force signal within a sliding window and quickly detects system oscillation through a simple 
mathematical transformation. Compared with the existing methods, it can calculate a normalized system stability index more 
accurately and faster. This quantified index is employed in a linearized adaptive law to tune the parameters of the admittance 
controller. Experimental validation of the proposed strategy is performed and compared with state-of-the-art work in a task 
of human-guided drawing. The results show that our proposed approach can effectively detect oscillation, and the drawing 
time is shortened by 15% with the same tracking accuracy. In addition, the energy consumption is 44.4% less on average.

Keywords Adaptive admittance control · Stability observer · Frequency analysis · Compliance control

1 Introduction

Physical human–robot interaction (pHRI) is an important 
feature of the new generation of collaborative robots. In 
recent years, a growing interest for pHRI, that a robot imple-
ments the assisted manipulation tasks, can be observed in 
many industrial applications. One of representative applica-
tions is to teach robots new skills by human-guided robot 
movement [1], such as the scenario in Fig. 1. In order that 
the skills can be demonstrated easily, the robot needs to work 
in the "gravity compensation" mode, in which human can 
guide the robot arm with less effort. To this end, different 
sensory-based approaches–force/torque sensor [2], tactile 

sensor [3] joint torque sensing [4, 5] and electric current 
[6, 7], have been studied to design the robot’s admittance 
controller.

Traditional admittance controllers in robotic manipula-
tion domain cannot be directly transferred to the human-
guided tasks because they are mainly designed for a static 
payload [8] or contacts environment with less variance [9, 
10]. The main challenge that human-guided tasks brought 
to robotic control is the unknown and dynamic interact force 
which depends on the human's habit and given tasks. To this 
end, the controller should be online, real-time and also adap-
tive. The proper computation of the controller parameters is 
crucial for successful and robust human-guided tasks. Such 
parameters not only affect the stability of the human–robot 
system, but also affect the performance of the guiding, e.g. 
whether the robot can follow the operator’s movement with 
less human’s effort [11]. Neuroscience and neurocontrol 
studies [12–14] in human robot interaction tasks showed 
that, human had an adaptive capability with external dis-
turbance by tuning their arms stiffness, and research in con-
trol engineering domain also was reported that the robot's 
stability strongly depended on admittance parameters in 
human robot interaction tasks [15–18]. Given the improper 
admittance parameters, the robot is apt to be unstable. As a 
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consequence, the robot behavior is deviated from the desired 
one and finally the robot oscillated with high amplitude and 
frequency, namely an unsafe interaction state. So, it is nec-
essary to study how to detect the arising of oscillations and 
then generate adaptive control command to drive robot back 
to the stable and safe state.

Different approaches were proposed to improve the insta-
bility of the pHRI system. Tsumugiwa et al. [19] proposed 
to tune the virtual damping coefficient in proportion to the 
estimated stiffness of the human arm. Wang et al. [20] esti-
mated the human arm’s stiffness with recursive experiments, 
defined the Lyapunov function and the stability frontiers for 
the closed-loop system [21]. Besides, an estimation of human 
arm impedance or intention was used for the variable imped-
ance controller [22–24]. The analytical model of the robot 
and the human arm was calculated and the admittance param-
eters were adjusted relative to the stiffness of the human 
arm. However, the hysteresis of the output response of the 
robot's position control loop is not considered. Moreover, this 
requires the analytic model in advance, and the estimation is 
not accurate because of the simplification of the model.

Another research line is based on the frequency analysis 
of online measured force/position. In [25], authors proposed 
a haptic stability observer (HSO) algorithm. The frequency 
analysis of the interaction force signal was done and stabil-
ity index was defined to detect the interaction oscillation. 
Consequently, the admittance parameters (e.g. mass inertia 
and virtual damping) were tuned proportionally. The main 
problem of HSO is that the stability index cannot clearly 
distinguish the different frequencies oscillation and the big 
detection threshold limits the value range of the stability 

index. Dimeaset al. [26] proposed a haptic stability observer 
with scaling factor (HSOSF). Although this approach took 
online recursive strategy to improve the detection accuracy 
of stability index in different frequencies, it caused the delay 
of observation and the computed stability index was not nor-
malized. Finally, the main limitations of the current variable 
admittance control methods are briefly concluded in Table 1.

The whole paper is organized in the following way. 
Section 2 introduces the admittance control framework. 
In Section 3, Robust Haptic Stability Observer (RHSO) is 
proposed and followed by the admittance parameters adap-
tive law in Section 4. The experiment evaluations for the 
proposed observer and adaptive law are shown in Section 5. 
Finally, Section 6 gives the conclusion and future work.

2  Adaptive Admittance control framework 
for pHRI

The admittance control scheme is widely used for compliant 
motion of the position-controlled robot. The controller gets 
the input of externally applied forces/torques and outputs the 
position of the robot by establishing a second order system 
relationship among position, velocity, acceleration and force. 
In most common tasks, contact only happens in the robot's 
end-effector, and the relationship is formalized as:

where ẋd and ẋm are the desired and measured velocity of the 
end-effector, respectively. The controller gains Md , Bd and Kd 
are 6-by-6 diagonal matrices, representing the virtual inertia, 
the virtual damping and the virtual stiffness, respectively. Since 
the restoring forces are not desirable during pHRI in free-space 
[2], the virtual stiffness is omitted in the study of this paper.

By transforming and discretizing Eq. 2:

(1)Md(ẍd − ẍm) + Bd(ẋd − ẋm) + Kd(xd − xm) = Fext

(2)Md(ẍd − ẍm) + Bd(ẋd − ẋm) = Fext

(3)

ẍd(kT) = ẍm(kT) +
1

Md

(
Fext(kT) − Bd

[
ẋd[(k − 1)T] − ẋm(kT)

])

Fig. 1  Human guiding a robot for drawing a complex pattern

Table 1  Variable admittance control methods for physical human–
robot interaction

Method Limitations

Human intention estimation - additional setup needed
- complicated training process

Human arm’s stiffness estimation - no accurate model
- estimation delay

Frequency analysis (HSO/HSOSF) - calculation delay
- no normalized index
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where ẋm = Jq̇m, ẍm = J̇q̇m + Jq̈m ∙ q̇m is the velocity of joint, 
and it is computed as differentiation of the joint position. 
Similarly, q̈m can be calculated as the differentiation of q̇m
.J is the Jacobian matrix of the robot. Note that, ẋd(kT) has 
been replaced by ẋd[(k − 1)T] , and ẋd(0)=0.

Given the Eq. 3, the whole admittance scheme including the 
robot is illustrated as Fig. 2. It is composed of four blocks—
robot model block, human–robot interaction block, admit-
tance control block and adaptive parameters block. The robot’s 
dynamical model can be obtained experimentally and the trans-
fer function G0(s) between measurement xm and command xd 
is estimated [7]. Inspired by [16], this paper explicitly models 
the human–robot interaction as a first-order system, including a 
human operation delay element 1∕(TH + 1) and an element KE 
for representing the stiffness of the environment (human arm). 
Previous studies showed that such simplified model is enough 
to the muscle characteristics of human arm [16].

From Eq. 2, the admittance controller with the form of 
the transfer function can be rewritten as Eq. 4.

The closed-loop transfer function of pHRI system consid-
ering contact force as input and measured pose of the robot 
end-effector as output is obtained as following:

where KE is the stiffness of human arm, H(s) is the time 
delay element with regard to the reaction of a human 
operator.

In order to improve the robustness of pHRI, the parameters 
Md , Bd are adaptively tuned by the online estimated stability 
index and empirical adaptive law, which is the main function-
ality of the adaptive parameters block. It is composed of a 
Robust Haptic Stability Observer (RHSO) and an adaptive law 
algorithm. Using the stability index calculated by RHSO, the 

(4)Y(s) =
xd(s)

Fext(s)
=

1

Mds
2 + Bds

(5)
xm(s)

Fext(s)
=

Y(s)G0(s)

1 + KEH(s)Y(s)G0(s)

adaptive law will tune the controller’s admittance parameters 
and guide pHRI system back to the stable state.

3  Robust Haptic Stability Observer

3.1  Haptic Stability Observer (HSO)

HSO is used for detecting and quantifying the stability. With 
observer, the stability is described not by the computed fea-
tures (energy and velocity) but by direct measurements (force 
and position). Based on HSO, a controller can be designed to 
suppress instability.

By monitoring the external force applied by the operator, the 
magnitude Pf (�) of the frequency components � can be calcu-
lated using FFT. A rough indication of instability is computed as 
by the ratio of the sum of magnitudes Pf  of the high frequency 
components to the sum of magnitudes of all frequencies:

where Ip is the index of system stabiliby, �0 is the lowest 
frequency of the FFT, �s∕2 is determined from the Nyquist-
Shannon sampling theorem and Pf (�) is the amplitude of the 
� frequency component. The frequency �c depends on the 
robot dynamics and is determined experimentally. It repre-
sents the crossover frequency used to distinguish between 
frequency components of stable and unstable motion � in 
Eq. 7 is the threshold of the stability.

The frequency components Pf (�) are computed by imple-
menting FFT on a window with the N latest measurements 
of the force signal. When the sampling period T  is selected, 
the window period of FFT is Tw = NT  , and the frequency 
resolution is Δf = 1∕Tw.

(6)Ip[kT] =

∑�s∕2

�=�c
Pf (�)

∑�s∕2

�=�0

Pf (�)

(7)
{

Ip < 𝜀, stable

Ip ≥ 𝜀, unstable

RHSO

Adaptive  

Law

Adaptive 

parameters Block

1sAdmittance 

Controller

mx1s

( )Y s

extF

dxdx

Human arm

EK1

1HT s

IK

1q

nq
dq mq

FK

J
J S

J Smxmx

( )H s

Admittance Control Block

Human-Robot Interaction Block

Robot  Model Block

Fig. 2  The scheme of adaptive admittance control for pHRI
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3.2  Robust Haptic Stability Observer(RHSO)

The main problem of HSO is that the stability index cannot 
clearly detect the different frequencies oscillation. In this 
paper, the robust haptic stability observer is proposed.

This paper redefine the stability index, as Eq. 8 and Eq. 9. Isp 
and � are system stability index and threshold of RHSO, respec-
tively. According to Eq. 6, the value of stability index in HSO 
is always high even without contact because of the noise output 
from force sensors. For example, in [22] authors had to use 
higher threshold to detect the oscillation. To this end, the stabil-
ity index calculated by HSO is usually almost the same even the 
oscillation degrees are apparently different. This means that the 
stability index in HSO cannot effectively describe the degree of 
system oscillation. Unlike HSO, our proposed method linearly 
reduces the stability index, so that the threshold of stability can 
be set smaller. When the system is unstable, RHSO effectively 
enlarges the range of stability index from [ � , 1] to [ �∕(1 + �) , 
1]. Therefore, RHSO can sensitively provides the quantified 
stability for different oscillation degrees, as shown in Fig. 3.

Secondly, it can be found that the time delay for ossillation 
detection in [23] was caused by the long sample window. To 
this end, in RHSO, a sliding data window is applied. A fixed 
size FFT window is defined, take FIFO strategy and use the his-
torical and a small part updated data at every sampling period. 
It not only guarantees the resolution of the oscillation detection 
but also improves the real-time performance of detection.

The whole algorithm is described in Algorithm 1. It rep-
resents the observer employed in one dimension direction, 
which can be easily extended and used in all six dimensions.

f [n] is the temporal queue of force/torque signal used by 
FFT, and N is the length of the queue. u is the number of f [n] 
updated for FFT each time. �, � are the thresholds of HSO 
and RHSO stability, respectively.

4  Admittance Parameters Adaptive Law 
Using RHSO

4.1  The Adaptive Law of Admittance Parameters

The stiffness of human arm is the main factor leading to the 
instability of the robot. In the admittance controller, increasing 

(8)Isp =

⎧
⎪⎨⎪⎩

Ip

1+𝜀
, (Ip < 𝜀)

Ip−𝜀

1−𝜀
+𝜀

1+𝜀
, (Ip ≥ 𝜀)

(9)

{
Isp < 𝜆 =

𝜀

1+𝜀
, stable

Isp ≥ 𝜆 =
𝜀

1+𝜀
, unstable

the damping coefficient Bd can increase the stability margin of 
the robot. However, the accompanied cost is the more efforts 
are needed from human in order to guide the robot. Experi-
mental study [19] showed that, when the robot is in unstable 
state, given the constant Md and the increased damping, the 
oscillation amplitude is decreased. However, the oscillation fre-
quency will not be decreased by only increasing the damping 
coefficient. Increasing Md and keeping Bd as a constant value, 
the oscillation frequency is decreased, but the amplitude is 
unchanged. This stimulates authors to design an adaptative law 
to simultaneously tune the admittance controller parameters, 
in order that the whole pHRI can keep a balanced amplitude 
frequency characteristics. The adaptive law is formalized as:

where Isp is the normalized stability index (Algorithm 1) 
of the robot.Mmin

d
, Bmin

d
 are the minimum values for the vir-

tual inertia and damping respectively, which are emperi-
cally designed for stable and less-effort guiding motion. In 
practice, they are the lowest permissible values for stable 
operation of the robot without being affected by the noise 
of the force sensor. Mr, Br are the reference value to make 
the robot stable. In practice they are designed as the virtual 
inertial and virtual damping while the stiffness of the human 
is maximum and the robot is in critical stable. It needs to be 
mentioned, in practice Mr ≫ Mmin

d
 , Br ≫ Bmin

d
.

In order to discuss the relationship between parameters and 
system stability, root locus and lookup table approach is used 
to design feasible parameters for Eq. 10. Given the transfer 
function (Eq. 5) which is parameterized by Md, Bd and KE, it 
firstly computes and draws root locus curve of one of param-
eters considering other two parameters are fixed. From the 
computed root locus, the parameter values while the robot is 

(10)
Md[kT] = Mmin

d
+MrIsp[kT]

Bd[kT] = Bmin
d

+ BrIsp[kT]

Fig. 3  The stability index of RHSO is calculated by Eq. 8. The RHSO 
effectively reduces the threshold of the stability index, so that it can 
distinguish the oscillation degree obviously
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in critical stable can be obtained. Using this strategy, sampling 
Md and KE in a physically rational range, Bd–a damping value 
mapping table can be formed with the given virtual inertia and 
human arm stiffness. In order that this analysis approach can 
be easily understood for readers, the analysis using one indu-
trial robot as an example is done in Section 5.1. The emperical 
parameters required for Eq. 10 are selected in the experiments 
at Section 5.2. and Section 5.3.

4.2  Index of Human Effort in the Guiding Task

In order to compare the human effort required for the guid-
ing task with different admittance controllers, the index of the 
effort as the total energy transferred from the human to the 
robot is defined. It is calculated by the integral of the force |fh| 
over the total traveled distance xf:

(11)P = ∫
xf

0

||fh||dx

5  Experimental Evaluation

Experimental evaluations were performed using a ROKAE 
XB7 6-DOF robot equipped with a 6 axis F/T sensor (OnRo-
bot HEX-E v2) mounted on the end-effector [7].The robot 
has control interface for joint position with the sampling 
and control frequency up to 1 kHz. The robot’s weight and 
maximum payloads are 47 kg and 7 kg, repectively.

5.1  Stability Analysis And Admittance Parameters 
Table

Robot’s stability depends on the simultaneously tuning of param-
eters in admittance controller block. In this part, using ROKAE 
XB6 as an example, the relation among parameters employing 
the root locus of pHRI model (Eq. 4, Eq. 5) is analyzed. The 
transfer function G0(s) of the robot is given as follows:

Algorithm 1  Robust Haptic 
Stability Observer (RHSO)
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The equivalent robot parameters in Eq. 5 are calculated for the 
configuration with Md = 0.25kg , Bd = 0.5Ns∕m, TH = 0.001s , 
KE = 10N∕m . The root locus module provided by MATLAB 
toolbox was used. With the given model parameters in Eq. 5, the 
root locus of KE, Bd are drawn in Fig. 4(a) and (b), respectively. 
It is illustrated in Fig. 4(a), with the increasing of the human arm 
stiffness, the root locus will pass through the Real Axis, and the 
system will be unstable. The KE is selected when the root locus 
is passing through the Real axis as the human arm’s stiffness 
in the critical stable. From the Fig. 4(b), it is clearly showned 
that increasing the damping coefficient Bd is an effective way to 
make the system more stable. The Bd is selected when the root 
locus is passing through the Real axis as the virtual damping in 
the critical stable.

Figure 5 can more intuitively show the relation among 
stiffness, damping and inertia for the stability. Increasing 
KE and keeping Md and Bd as constant values, the oscilla-
tion amplitude is decreased, but the oscillation frequency 
is increased. Given the constant Md, KE and the increased 
damping, the oscillation amplitude is decreased. However, 
the oscillation frequency will not be decreased. Increasing 
Md and keeping Bd and KE as constant values, the oscilla-
tion frequency is decreased, but the amplitude is increased. 
Keeping constant ratio— Md/Bd and increasing both param-
eters are effective admittance adaption to reduce the magni-
tude and frequency of oscillation.

Three Md values 0.01 kg, 0.5 kg and 1 kg, and seven 
KE from 0.25N/m to 2000N/m are sampled. Using the 
approach proposed in Sec IV.A. The different Bd of sys-
tem critical stable state are obtained. As shown in Fig. 6, 
there are three different critical stability lines which is 
relevant to three virtual inertias. The whole stiffness and 
damping–plane is divided into stable region and unstable 
region by each critical stability line. It is noticed that the 
increasing of the virtual inertia Md will make the system 
stable region smaller. In addition, as long as the human 
arm stiffness is less than the critically stable stiffness, the 
system will be stable. With transfer function (Eq. 12), 
more Md and KE are sampled to obtain a virtual damping 
parameters table while the robot is in the critical stable 
state. It is shown in Table 2.

5.2  Evaluation of Stability Index Computed by HSO, 
HSOSF and RHSO

In this experiment, RHSO approach is compared with HSO 
and HSOSF in computing stability index and detecting the 
oscillation in a point to point task. As shown in Fig. 7, a 
human is asked to guide the robot moving 160 mm -repeatly 

(12)G0(s) =
1.45e − 6s3 − 0.75s2 + 3.92e5s + 5.48e7

s4 + 190.9s3 + 2.73e4s2 + 1.72e6s + 5.55e7

from point A to point B and back to point A as fast as possi-
ble along the X-axis. The admittance parameters along X-axis 
are set as Mx

d
= 0.003kg,Bx

d
= 0.006Ns∕m . These parameters 

were used because it is known that the robot is at the bound-
ary of the stable region with such fixed parameters according 
to parameters Table 2. In other directions, parameters are set 
as M{y,z,�,�,�}

d
= 1kg , B{y,z,�,�,�}

d
= 50Ns∕m . The experiments 

show that human can successfully guide robot moving by 
lightly pinching the handle. With the increasing stiffness of 
human arm, e.g. with power grasping, the guidance motion 
become unstable. The detailed guiding procedure is illus-
trated with accompanied video and explained as following.

(a) Root locus of the system considering human arm stiffness as 

variable and virtual inertia and virtual damping are fixed.

(b) Root locus of the system considering virtual damping as variable 

and virtual inertia and human arm stiffness are fixed.

Fig. 4  System stability analysis considering three parameters: virtual 
inertia, virtual damping and human arm stiffness
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In the initialized stage S0, there is no external contact and 
the robot keeps stationary. At the first stage S1, the human 
pinches the handle with two fingers and guides it from point 

A to point B and back to point A repeatly. The motion is 
required as fast as it can. At second stage S2, the human 
grasps the handle with moderate stiffness and does the guid-
ing motion. At the third stage S3, the human is asked to 
grasp the handle as tightly as he can and move it like stage 2. 
Finally at the fourth stage S4, the human pinches the handle 
again and guides the robot motion. Experiment result shows 
that robot starts to oscillate at S2 and S3 stages with different 
frequencies and amplitudes. The measured external force 
and stages are shown in Fig. 8.

FFT is used to analyze the measured external force, and 
the frequency distribution is shown in Fig. 9. In the figure, 
the frequency of human guiding motion is lower than 2 Hz. 
The two unstable oscillations with frequency higher than 
2 Hz are correspond to the S2 and S3 stages. The stabil-
ity index employing HSO, HSOSF, RHSO are computed, 
respectively. Parameters required in the algorithms are set as 
�0 = 0 , �c = 2HZ , �s = 20HZ . Window length n = 1024 . 
Algorithm in HSOSF [22], three more parameters are 
required � = 0.99 , fmax = 15N , p = 5 . The comparing result 
is shown in Fig. 10.

Fig. 5  Frequency response diagrams for different types of admittance adaptation

Fig. 6  System stability region division

Table 2  Virtual damping 
value while pHRI is in critical 
stable given the virtual inertia 
and human arm stiffness (one 
dimention)

KE(N/m) Md(kg)

0.0025 0.01 0.25 0.5 0.75 1

0.25 0.0051 0.0098 0.0261 0.0365 0.0444 0.0510
10 0.191 0.232 0.332 0.428 0.521 0.609
100 1.620 1.990 2.290 2.430 2.440 2.250
500 7.48 8.30 11.00 11.50 12.80 12.50
1000 16.10 15.50 19.01 22.00 23.51 23.00
2000 30.52 31.40 38.11 41.50 41.98 43.12
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As shown in Fig. 10, at stage S0, there is no external 
contact, and the stability index computed by HSO is a posi-
tive value, which is mainly caused by the force/sensor noise. 
This stage can be classified as stable if the threshold is set 
higher. The stability index from HSOSF is close to 0, which 
is a a good sign to show the robot is in the stable stage. 
The stability index from our approach has a middle-level 
output which has a better margin compared with the HSO 
approach. In stage S1, the robot is stably guided by a human. 
Our approach has the best margin for designing stability 
thresholds. At stage S2, the robot is in the unstable stage. 
The computed stability index from HSOSF has a delay, and 
the threshold required for correctly classifying the state is 
larger than the other two approaches, Although the stabil-
ity index calculated by RHSO also has positive values at 
the S0 and S1 stages, it is less than the values computed 
from HSO. At the S2 and S3 stages, compared with HSO, 
the RHSO not only detects the instability motion but also 
effectively distinguishes the difference between the stages 
from the oscillation frequency. From the top-left small figure 
in Fig. 8, the robot starts to oscillate at around 15.0 s. It is 
detected by HSO at around 15.5 s. In contrast, the RHSO 
method detects system oscillations in a more timely manner 
at around 15.0 s.

5.3  Evaluation for Guiding Efficiency, Accuracy 
and Human’s Effort with Proposed Adaptive 
Controller

This experiment is used to verify the RHSO and adaptive 
admittance controller in a challenging tracking task. The 
task is illustrated in Fig. 1, the human is required to guide 
the robot following a windmill shaped pattern on the X–Y 

plane as accurately and quickly as possible. The experiments 
are done by five person and everyone does 5 trials before 
the recorded experiments are done. One of results is show 
in Fig. 11.

In the experiment, the robot is compliance in X and Y 
dimension, while in other dimensions, virtual inertias and 
virtual dampings are set to large values: M{z,�,�,�}

d
= 1kg , 

B
{z,�,�,�}

d
= 50Ns∕m . In X, Y directions, three groups 

parameters are used: Min parameters, Max parameters 
and adaptive parameters proposed in Eq.  10. The Min 
parameters are set as Mx

d
= 0.0025kg , My

d
= 0.0025k, 

Bx
d
= 0.006Ns∕m, By

d
= 0.006Ns∕m . Damping value is 

slightly larger than the critical damping parameters while 
KE = 0.25N∕m,Md = 0.0025kg, in Table  2. According 
to Fig. 5, the robot is staying in stable region with slight 
margin when the human guides it with low stiffness. When 
the stiffness of the human arm is increased, the system will 
be unstable. The Max parameters are Mx

d
= M

y

d
= 0.5kg , 

Bx
d
= B

y

d
= 23.0Ns∕m . As in Table 2, as long as the human 

arm stiffness is less than 1000N∕m (Normally, the muscle 
stiffness is less than this value [27]), the system will be stable 
with these parameters. The adaptive parameters are defined 
as Mx

d
= M

y

d
= 0.0025 +MrIsp , Bx

d
= B

y

d
= 0.006 + BrIsp . In 

this experiment, Mr = 0.5kg,Br = 23.0Ns∕m are set because 
Mr ≫ Mmin

d
 , Br ≫ Bmin

d
.

In order to compare the tracking accuracy with different 
approaches, the index is defined as follows:

x

Y

z

Fig. 7  Human guiding for a robot’s linear motion
Fig. 8  Contact force profile in five stages in the task of the human 
guiding the robot for linear motion. the top-left small figure is the 
enlarged view of contact force from 13–19  s. S0: no contact, S1: 
guiding with pinching the handle and low stiffness, S2: guiding with 
power grasping but moderate stiffness, S3: guiding with power grasp-
ing but high stiffness, S4: guiding with pinching the handle and low 
stiffness. At the S1 and S4 stages, human can guide the robot stably. 
The robot is unstable and oscillation frequency at stage S3 is higher 
than at stage S2 because of the higher human arm stiffness. This is 
consistent with the FFT analysis in Fig. 9
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where Ti(x, y) is the dragging trajectory at the ith sampling-
period, Ri(x, y) is of the reference trajectory, and n is the 
number of robot trajectory points.

Tracking curve with "Max parameters" controller is more 
smooth. The downside is that the guiding task needs more 
human energy and the operator reported that he felt the 
robot was more "heavy" to guide. The "Adaptive Param-
eters" controller is an optimized method to minimize the 
energy consumption of the arm without reducing the track-
ing accuracy. One thing that needs to be mentioned is that 

(13)Var =

n�
i=1

‖Ti(x, y) − Ri(x, y)‖
‖Ri(x, y)‖

"Min parameters" controller only works when the human 
arm stiffness is low.

All operators are visualized, named A,B,C,D,E, drawing 
efficiency and accuracy in Fig. 12, which includes cost time, 
energy consumption and tracking variances. With the “Min 
parameters” controller, it costs the shortest time, but tracking 
accuracy is worse due to the robot is too “soft and sensitive”. 
Therefore, compared with the adaptive parameters controller, 
the "Min parameters" controller has more overshooting trajec-
tories and more energy consumpation. With the “Max param-
eters” controller, it costs the longest time and highest energy, 
but tracking accuracy is best. Using the adaptive parameters, 
the costed time is longer than the time with “Min parameters” 
controller, but the stability is improved obviously. Besides, 
with the proposed method, human consumes the least energy. 
Even comparing with “Min parameters” controller, the energy 
consumption is 44.4% less averagely.

Fig. 9  Frequency distribution of 
the force signal

Fig. 10  Stability index computation from the measured force in Fig. 8 
using three different observers. The robot is oscillating at stage 2 and 
3 with different frequencies. Compared with HSO, RHSO stability 
index reflects this obviously and this is prerequisite that admittance 
parameters in controller can be tuned according to the stability index. 
It is also can be seen that the RHSO method detects the oscillations in 
a more timely manner than HSOSF

Fig. 11  Tracking results with different controllers
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Given the adaptive controller, the measured force, 
computed stability index and variable inertial mass and 
damping are visualized in Fig. 13. The experiment is 
illustrated in the accompanied video. It can be seen (1) 
there is no strong force oscillation. Only weak oscillation 
is found when the computed stability index is higher than 
the threshold. The adaptive controller quickly works and 
restrains the oscillation caused by the increased stiffness. 
(2) the stability index is smooth and continuous. There 
are several places, the stability index is higher than the 
threshold. The inertia mass and virtual damping are fine 
tuned in these places.

6  Conclusion

In this paper, an adaptive admittance controller for pHRI task 
is proposed. In the control framework, the measured force 
feedback and FFT approach are emploied to detect the robot’s 
oscillations with a robust haptic stability observer. Our pro-
posed method has advantage in many aspects comparing with 
state of the art approaches. e.g. less sensitive to non-contact 
sensing noise, no detection delay of the oscillation.

Given the admittance control scheme, an adaptive law 
exploiting the output of the observer is proposed to tune the 
admittance parameters of controller and restore the robot back 
to stable state once the interaction is unsafe. This paper dem-
onstrates the functionality of the proposed adaptive controller 
with a human-guided drawing task. With the controller human 
can guide the robot with minimum effort and achieve better 
tracking accuracy and efficiency comparing with the fixed 
admittance parameters controller. The proposed adaptive law 
is a practical and empirical solution and uses classical root 
locus approach to design the controller parameters. Although 
a rigorous mathematical proof for the stability of the system 
is not provided, the linearized controller parameters calculated 
by lookup table can ensure the convergence of the system in 
the reasonable scope of human arm stiffness, virtual inertial 
and virtual damping from the opinion of classical control the-
ory. Except this potential work in future, the authors also will 
study how the approach can be extended to other manipulation 
applications, e.g. cutting, sawing, peg-in-hole etc.
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