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Adaptive and cooperative control of arms and fingers for natural object reaching and

grasping, without explicit 3D geometric pose information, is observed in humans. In this
study, an image-based visual servoing controller, inspired by human grasping behavior, is

proposed for an arm-gripper system. A large-scale dataset is constructed using Pybullet

simulation, comprising paired images and arm-gripper control signals mimicking expert
grasping behavior. Leveraging this dataset, a network is directly trained to derive a

control policy that maps images to cooperative grasp control. Subsequently, the learned

synergy grasping policy from the network is directly applied to a real robot with the
same configuration. Experimental results demonstrate the effectiveness of the algorithm.

Videos can be found at https://www.bilibili.com/video/BV1tg4y1b7Qe/.

Keywords: visual servoing; robotic grasping; robot learning.

1. Introduction

Grasping is an important area of research in intelligent robotics. A large number of

studies have explored various aspects of perception, planning and control to achieve

robust grasping behaviour in robots. For example, many studies have been devoted

to determining a stable grasping region for complex objects, which is a difficult task

influenced by factors such as object texture, shape, mass, and type 1−2. However, in

many real-world applications, robots often need to grasp simple objects (as shown

in the Figure 1).
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Fig. 1. Closed-loop, adaptive arm-gripper synergistic grasping in 3D space with only RGB images.

In this context, the current focus is on achieving end-to-end arm-gripper synergy

between the robotic arm and gripper to approach and grasp objects in a human-

like manner. Arm-gripper synergy is a novel concept introduced in this paper, which

entails focusing on the coordinated motion of the hand and arm during the object

grasping process. For instance, as the arm approaches an object, the fingers work

in coordination to close, and as the arm moves away from the object, the fingers

open. This form of coordination unifies the stages of approach and grasp into a

more natural and human-like process, seamlessly integrating the approach and grasp

stages into a single, more efficient process. Unlike humans, whose arm and hand

movements adaptively adjust to the distance from the target object, current robots

with arm and gripper lack well-researched methods to achieve this natural synergy
3.
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Further, most existing grasping solutions 4 follow a three-phase framework: mo-

tion planning, grasp planning and grasp control 5. Grasp planning defines the desired

tool frame pose, motion planning generates smooth arm trajectories, and grasp con-

trol coordinates the gripper’s movements to fixate the target object. However, this

framework faces a number of challenges:

(a) It requires robot hand-eye calibration to localize the target in the robot

coordinate system, which is a time-consuming process prone to systematic errors.

(b) Conventional methods rely on depth information to compute the pose of

an object. Due to hardware limitations, depth cameras may have errors and blind

spots, leading to unpredictable results.

(c) Few studies have bridged the gap between motion planning and grasping

control, leading to a disconnect between arm and hand movements and unnatural

grasping behaviour.

(d) In past studies, the fingers of the robotic hand would remain stationary as the

arm approached an object and would only begin to close the fingers when the hand

reached a specific position. This approach takes longer and produces mechanical

and non-smooth grasping behaviour compared to human grasping behaviour.

Inspired by these challenges, this paper presents a learning-based framework that

formulates robot approach and coordinated grasping as a visual servoing problem.

Unlike traditional visual servoing methods that require depth information to com-

pute the Jacobian matrix, this approach does not rely on depth information from

the visual system, thus eliminating the problem of inaccurate or missing depth

data. Instead, it generates robotic arm-gripper synergy control commands directly

from pixel-level inputs, thereby facilitating natural synergistic control between the

manipulator and gripper. This approach requires minimal calibration and depth

information and is therefore suitable for real-time, end-to-end gripper control.

While manually separating the robotic arm and hand for gripping control is a

practical engineering solution, it can lead to a non-smooth gripping process. To

achieve more natural grasping, arm approach and hand control should be unified.

Recent advances in robot learning, especially reinforcement learning (RL), offer the

possibility of end-to-end grasping 6. However, reinforcement learning typically re-

quires large amounts of data, both simulated and real-world experimental, which

can limit practical applications and is sensitive to the specific settings of the envi-

ronment.

In this work, the proposed visual servoing algorithm builds on an expert be-

havioural dataset to encode spatial and temporal mappings from images into arm

grasping actions. This approach achieves collaborative control of the arm and grip-

per and allows natural collaborative actions using only a low-cost webcam.

The main contributions of this paper are two aspects:

(1) With the use of a low-cost RGB camera, a learning-based visual servo-

ing controller is introduced. This controller enables the robot to achieve real-time,

closed-loop grasping with end-to-end arm-gripper synergy for a wide range of ob-
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jects;

(2) A novel metric for evaluating the synergy motion of the robotic arm and

gripper is proposed in this paper.

2. Related Work

2.1. Arm-gripper synergetic grasping

A wide range of research work focus to achieve a highly successful grasping rate

based on data-driven methods, like Dex-Net9, Anygrasp10, GG-CNN11. By con-

structing a large-scale grasping data set, they underly the grasping planning policy

into the data, using corresponding networks to abstract the grasping pose in the

cartesian world in a supervised-learning manner. Another pipeline12 using rein-

forcement learning(RL) also has an appealing performance in recent works. Yet

the RL methods for robotics are commonly suffering sample efficiency, sim2real

problems13,8, especially in high-dimensional sensory data, such as images and multi-

sensory combined data. In general, these two pipeline methods trends to output

explicit grasp pose in position level, or image level that is calculated to explicit

grasp pose by depth cameras. While few of them pay attention to the collabora-

tion between the manipulator and gripper. Previous work14−15 usually artificially

fragmented approaching and grasping, ignoring the synergy between arm and grip-

per/hand. This research3 separated the reaching and grasping manually, which can

not yield natural human-like grasping and manipulation. 16 made use of RL method

to learn reactive reaching and grasping skills through a well-designed reward func-

tion with arm-hand synergy, but lacking real experiments and existing potential

sim2real issues.

2.2. Grasping using RGB image only

Most of the grasping4,11 methods need RGB-D information to calculate the coordi-

nated grasping pose. Some of them 17 describe grasp as a five-dimensional vector,

including grasping point and orientation in the image level, which need to be re-

calculated to the robot grasping coordination system using depth information. The

depth camera usually is needed to calculate the 6D grasping pose. But the depth

camera’s precision and cost need to be considered, especially in the occasion of need

high-precision. The depth cameras used in industry field can be quite expensive and

is not effective at close distance11.

Using RGB images only to achieve successful grasping is challenging and promis-

ing. These work’s pipeline 18−21 is first to do the pose estimation of target object

using RGB only without depth information, then transfer the pose from camera

coordination to the robot coordinate system using the hand-eye calibration. How-

ever, they all need a camera intrinsic to solve the PnP problem22 to compute the

6D pose. Unlike our method, it does not need any hand-eye calibration and camera

intrinsics in the grasping progress, enabling successful grasping with RGB simply.
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It achieves a performance that is ”Seeing is Grasping” really without any prior

preparation work. All the simplicity thanks to the non-coordinated design in the

grasping progress of our method. Successful grasping is defined as when the current

image matches the target image.

2.3. Grasping based on visual servoing

Closed-loop grasping can also be commonly regarded as visual servoing23. Numerous

works24−26 apply visual servoing in the grasping. Yet in the grasping based on visual

servoing, the jacobian matrix needs to be calculated using depth information, to

map the error of image level to the camera velocity. Additionally, it requires prior

or hand-made features of the image, which is not suitable for a wide range of

random objects. GG-CNN11 achieves real-time, closed-loop grasping based on a

supervised learning method using an improved Cornell grasping dataset27, but it

suffers the problem of cannot obtain reliable depth information especially when

the distance between the camera and target objects is close. The work28 achieve

continuous visual servoing that can grasp a wide range of objects, without precise

hand-eye calibration. However, it requires a large-scale real-world dataset which is

expensive.29 is the closest method to our work, it learns a visual servoing controller

as well to guide the robot to a specialized pose that they call a bottleneck point,

and then it directly replays human demonstration for the next manipulation tasks.

Their framework is valid only for a certain definite object and the control velocity

is calculated by human-made equations while not from policy directly. In contrast,

our method has an adaptive arm-gripper collaborative grasping performance with

direct control velocity as output.

3. Problem Formulation

In this study, the problem of collaborative grasping of a target object by a robot arm

is approached as a learning-based visual servoing problem. Both the target image

and the current image are provided, and the current arm-gripper control signal is

obtained directly, without the need for prior knowledge of hand-eye calibration and

depth information. The natural collaboration problem between the arm and gripper

is formulated as a mapping policy function f between the images and control signals

of the manipulator and gripper. This mapping function will be represented by the

deep network described in Section 4.3 to achieve an adaptive mapping of feature

information in image space and robot control signals.

[varm, wgripper] = f(icurrent, itarget) (1)

As Equation 1 shows, icurrent and itarget represent the current and goal simpli-

fied image, the control signal varm represents the control velocity of the manipula-

tor, and the control signal wgripper is the gripper width. The learned policy directly

outputs manipulator and gripper control signals, thus having collaborative reaching

and grasping control actions. During reaching and grasping, it can handle dynamic
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Fig. 2. The proposed framework includes three parts: data set collection, policy training, and real

robot execution.

target objects and perform reactive, human-like adaptive actions, although the data

set we collected in the simulation does not specifically include dynamic data.

4. Method

4.1. Arm-gripper synergy grasping framework overview

The Figure 2 presents the whole systematic working framework of this work. It

contains three modules, including data set collection, strategy offline training, and

real robot execution parts. In the data collection phase, the approach outlined in

Section 4.2 is employed to execute control of the robot arm through an expert

demonstration strategy. Approximately two hundred thousand pairs of images and

control signals are gathered during this procedure. Regarding the policy training

part, since our policy has two inputs, a parallel network is well-suited to extract

our policy. The learned visual servoing policy can then be directly applied to a

real robot for execution. In this process, object segmentation frames are initially

acquired through off-the-shelf vision detection techniques, and subsequent image

pre-processing is carried out to transform them into the iconic circular feature

images collected during simulation. Finally, the current image and the target image

are fed into the learned strategy to obtain the velocity control signal and the gripper

control width in cartesian space of the robot arm and send them to the robot for

execution. The control frequency of the whole system is set to 25 Hz.
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Fig. 3. The simulation environment for data set collection.

4.2. Expert demonstration dataset collection

This section presents how to collect the large-scale dataset in simulation automat-

ically, which is used to train the networks to extract control policy. Dataset is the

crucial factor for obtaining the correct control policy in this work. The data is auto-

matically collected according to the designed expert reaching and grasping synergy

control policy in the Pybullet simulation platform.

4.2.1. The simulation platform for data collection

Data is collected in the simulation while training directly on the robot, which is

of key components of this work. This section introduces the simulation platform

as Figure 3 shows: The target object is uniformly simplified into an iconic ball,

as observed in the simulation. By applying expert skills designed in Equation 2

and Equation 3, starting from a point within the ’annual cycle of the tree,’ the

robot is guided to a specific target point precisely, facilitating the grasping of the

target ball by our gripper. The simulation environment can be seen in Figure 3 In

order to prevent collisions between the gripper and the target object, the gripper is

not simulated in the simulation. Instead, the virtual gripper action is executed as

designed in Equation3.
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4.2.2. Expert skills for reaching and grasping synergy

In this work, our goal is to implement professional collaborative control strategies,

which means that the dataset should be constructed under the guidance of pro-

fessional robot control methods. Trajectory planning is a well-established research

area. Based on robot trajectory planning techniques and our designed hand grasp

merging strategy, the trajectory designed by Equation 3 is employed in the reach-

ing and grasping process. Using a quadratic interpolation curve at the position level

teaches the robot to have a smooth position and velocity control curve from the

beginning to the end, maintaining position, and velocity continuity throughout the

process.

pi = a ∗ t2i + b ∗ ti + c (2)

wi = (wmax − wtarget) ∗
ti

te − ts
(3)

where pi represents the 3D-space position at the ti timestamp, a, b, c are the co-

efficients for the quadratic spline curve. wi is gripper width at ti timestamp, and

wmax,wtarget are the maximum and target width of the gripper separately. Expert

control policy can be learned from the dataset collected in this manner only if the

robot is taught expert-level control skills in the simulation.

4.2.3. Dateset composition

Complete progress of moving the manipulator to the target position with a human-

like gripper reaction is treated as a demonstration or trajectory in the simulation.

In this study, the x, y, and z velocities of the manipulator in Cartesian space,

along with the gripper width, are recorded as the label-control signal pairs for the

datasets. At the same time, the corresponding images are matched and saved as the

image pairs in the data sets. For velocity and gripper width data balance, all data

are normalized to 0-1.

4.3. Policy network and learning

4.3.1. Network strucure

The deep network structure is shown in Figure 4. Our control policy is represented

by a deep neural network, aiming to achieve end-to-end processing from images

to control signals. The network takes as input the current camera-captured image

and the target image, producing as output control signals for the robotic arm,

including control velocities in the x, y, and z directions, as well as gripper width.

Given the relatively simple nature of the image features used in our method, we

opt for a readily available, parameter-efficient, and real-time capable AlexNet for

image feature extraction. The transformation and connection from image features

to control signals are accomplished using fully connected layers. Our policy needs
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Fig. 4. The network structure. An AlexNet is employed for image feature extraction, with one

branch processing the current image and another handling the target image. The features from

these two branches are fused together through fully connected layers, followed by another fully
connected network, which produces the final 4-dimensional control signal. This signal includes

control velocities for the three dimensions of the arm and the gripper width.

to take current and goal images as the input of the network at the same time, so a

siamese network30 is intuitive to be used in our work. The siamese network has been

proven to have the ability to yield accurate pose transformation between two image

features. Drawing inspiration from this, the siamese network is employed for feature

extraction from image pairs, with the intention of fusing them together to generate

real-time direct control signals at each control step, as opposed to the output of

poses between two images.

As Figure 4 shown, each branch of the network firstly makes use of the classical

Alexnet network structure 31 as the encoder of each image. The pre-trained parame-

ters of Alexnet are leveraged to enhance training efficiency, and the branch features

are concatenated, followed by 6 fully connected layers to further map the control

policy from image pairs. The output of the network is Onet = [vx, vy, vz, wgripper],

which can be directly used for real robot execution without any extra mathematical

calculations and transformations.

4.3.2. Loss

As for the loss function, the MSE loss function in the pytorch is adopted in this

work. As described in Section 4.2, each image pair corresponds to a control signal

label veccontrol = [vx, vy, vz, width]. The output control signals refers to v̂eccontrol =

[vx, vy, vz, width], then the loss function expression is described as follow,

Loss =
1

n

n∑
i=0

1

N

N∑
j=0

(veci − v̂eci)
2 (4)
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where N is the number of samples, n is the length of veccontrol, and veci and v̂eci
refer to the item of veccontrol.

4.3.3. Policy learning

In this work, the learning rate is configured at 0.0001 and is scheduled to decrease by

half at regular intervals during the training process. A batch size of 256 is employed,

and the training utilizes the Adam optimizer. Approximately 200 thousand image

pairs are employed in our training dataset. The training was conducted on a personal

computer equipped with three GTX-1080Ti GPUs, operating in parallel.

4.4. Precision and synergy metrics

The target pose is defined as the pose when the current camera image is the same as

the target image. In theory, the control velocity vt = [vx, vy, vz] at the target pose is

zero, and the gripper width wt is manually setting value based on the target objects

size. However, they might not be the perfect value because of policy learning and

robot hardware limits, and other various system errors. To assess precision, values γ

and ew are introduced for quantifying reaching performance and gripper precision,

as shown in Equation 5 and Equation 6, where wt represents the gripper width at

the target pose, and ws denotes the predefined target object setting value.

γ =
√

v2x + v2y + v2z (5)

ew = |wt − ws| (6)

s =
vg
va

(7)

The synergy metrics also is a novel and crucial metric in evaluating the human-

like grasping in this work. It is defined as shown in Equation 7, where vg represents

the normalized closing velocity of the gripper, while va signifies the normalized

velocity of the manipulator in Cartesian space.

5. Experimental Results and Analysis

5.1. Experiments setup

Validation experiments were conducted in a real-world setting, utilizing the Franka

Emily 7 DOF robot. Calculations were performed on a PC equipped with a GTX-

1080Ti GPU. RGB images, with a resolution of 640x480, were resized to 480x480

before being input into the learned policy. Realsense cameras were used for image
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Fig. 5. The cartesian trajectories of the learn policy to grasp a static object in different positions
and heights.

acquisition, though only the RGB images were employed, omitting depth infor-

mation. Additionally, a low-cost web camera was utilized to illustrate the policy’s

effectiveness.

Subsequent experiments showcased the policy’s capabilities in grasping static,

dynamic, and a wide variety of objects, all while maintaining a frequency of 25Hz. It

is important to emphasize that this policy does not fully address grasping planning.

Rather, its function is to position the target object at the center of the gripper,

allowing it to autonomously grasp center-symmetric objects exclusively.

5.2. Arm-gripper Synergy Behavior in Grasping the Static Objects

To evaluate the static grasping performance of our policy, two experimental scenar-

ios were established: one involved the traditional up-down grasping, representative

of the classic configuration in most bin-picking grasping algorithms, and the other

entailed non-up-down grasping, where the manipulator remained stationary verti-

cally, a feat achieved by only a limited number of data-driven bin-picking methods.

In the context of up-down grasping, the capacity to grasp a static object at

various positions and heights in 3D Cartesian space is demonstrated, as depicted

in Figure 5. The non-up-down grasping capability is exemplified by the retrieval of

an apple model held by a human hand in a non-up-down operational environment.
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Fig. 6. The cartesian trajectories of the learn policy to grasp a dynamic object held by a human

hand.

5.2.1. Up-down grasping

As can be seen in Figure 7, the control velocity decrease to zero with close to the

target object. The closer to the target object, the smaller the velocity. All of the

velocity has a quite smooth curve which is good for the manipulation control. As

for the gripper width, our method produces natural, human-like actions, that is,

the closer to the target object, the smaller the gripper width. The velocity in 3D-

space should be zero in theory, however, it has errors because of policy precision,

see Section 4.4.

Figure 5 shows the cartesian trajectories of the end effector, reflecting the learned

policy having the grasping ability when the target object is located in different 3D

positions.

5.2.2. Non Up-down grasping

The learned policy has the ability to perform grasping in a non-up-down pose,

indicating its proficiency in grasping objects in 3D space. This ability can be seen

in Figure 6, showing the grasping trajectory of the up-down and no-up-down settings

together.
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Fig. 7. The control signals of the learn policy to grasp a static object.

5.3. Arm-gripper synergy behavior in grasping the dynamic objects

In this section, the ability to grasp dynamic objects is exhibited. The Franka robot

can chase the target objects dynamically which are taken by a human hand.

Figure 8 shows the control signals obtained from our policy. The dynamic target

object induces variations in the gripper’s width and the arm’s velocity. The gripper’s

width undergoes continuous adjustments in response to changes in the target ob-

ject’s distance and proximity, rather than executing a simple open-close command.

The arm’s speed, in turn, adapts to the target object’s motion: the control speed in

the z-direction is directly proportional to the object’s distance, while the speed in

the x and y-directions ensures that the target object remains centered within the

image, allowing the gripper to naturally and dynamically track the target object.

5.4. Grasping objects with different camera FOVs

Since the target image is fixed, different camera FOV can influence the final distance

between the camera and the object. Although our specialized L-shape gripper can

be adjusted in length, which can enable grasping different size objects, the size is

still limited. Different FOVs can widen the range of sizes of objects that can be

grasped. Hence, to achieve grasping objects with different sizes, object grasping is

demonstrated using two cameras: one is a RealSense camera with a 70-degree field

of view, and the other is a low-cost USB camera with a 135-degree field of view.

Figure 10 showcases the grasping process with these two cameras.

Figure 10 illustrates that a larger field of view (FOV) in the camera enables the

grasping of larger objects. The use of various camera FOVs demonstrates that a

diverse array of objects, as depicted in Figure 9, can be grasped by our method.
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Fig. 8. The control signals of the learn policy to grasp a dynamic object held by a human hand.

Fig. 9. The experiment objects, the objects within the outlined boxes in the picture are the model,

while the others are real objects.

5.5. Precision and synergy performance

In the grasping task, the control signals, including velocity, are not as accurate

as their ideal value of zero. As a result, the velocity is set to zero when it reaches

the threshold value, which corresponds to a 1mm position increment within a single
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Fig. 10. The proposed framework can grasp a wide range of objects. (a)-(e) using a low-cost USB

camera; (f)-(j) using RGB output of Realsense camera. (Partial display, see the accompanying

video for all.)

Table 1. Visual servoing precision of two different target objects.

No. of Test Apple/γ (m/s) Apple/ew Orange/γ (m/s) Orange/ew

Test 1 0.01005 -0.01582 0.00262 -0.01461

Test 2 0.01005 0.0009 0.00352 -0.02969

Test 3 0.00306 -0.02940 0.00355 -0.02053

Test 4 0.01042 -0.01377 0.00328 -0.02193

Test 5 0.01019 0.00565 0.00251 -0.01580

Test 6 0.01205 0.00122 0.00262 -0.01461

Test 7 0.00905 -0.00480 0.00271 -0.02317

Test 8 0.01256 0.01627 0.02048 0.04683

Test 9 0.01180 -0.01768 0.00104 -0.02083

Test 10 0.00822 -0.00677 0.00267 -0.01517

Average 0.00975 -0.00641 0.00451 -0.01295

control period. Subsequently, the gripper is closed simultaneously. Nevertheless, it

should be noted that this action does not represent the actual limit or precision of

the visual servoing control.

To evaluate the true precision based on Equation 5 and Equation 6, precision

test experiments were conducted, in which the threshold value was set to zero, as

prescribed by theory.

During the test experiments, the gripper extension was deactivated to prevent
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contact with the target object. Only the gripper width, as per the policy output, was

recorded without execution, and the control portion of the robot arm was executed

until the arm reached a complete standstill. In order to mitigate the influence of sin-

gle target object specificity, two representative objects, namely an apple model and

an actual orange, were selected as target objects. Each of these objects underwent

a series of 10 repeated experiments.

The result is shown in Table 1. It is clear to see it has quite a high-velocity control

precision. The average control precision of velocity is 9.75mm/s and 4.51mm/s for

apple and orange separately under a control frequency of 25Hz. As for the gripper

width precision, the data in Tbale 1 is normalized to 0-1, which is 0.5128mm and

1.036mm for the Franka gripper.

The defined arm-gripper synergy metric Equation 7 is presented in Figure 11,

comparing with the traditional method: Approach the object first and then perform

the grasp. It can be seen that our proposed synergy metric represents the synergy of

the arm-gripper properly: The closer to the target object, the bigger the degree of

synergy. This strategy design for arm-gripper synergy is consistent with the intuition

of grasping that not much synergy is required when moving away from the object

and bigger synergy is required when approaching the target object.

5.6. Generalization test

In this work, the control signals of our strategy are limited to positions in 3D space

without orientation, and the learned policy is designed to master the case where

the plane where the target object is located is parallel to the horizontal plane of

the manipulator. However, in order to test and gain a deeper understanding of the

learned strategy, generalization test experiments were conducted to complement it.

In the default setting of our grasping task, the horizontal plane where the camera

is located and the plane where the target object is located is parallel. In the gener-

alization test experiments, slight adjustments were made to both angles to observe

how the learned strategy would handle this situation. In the attached video, it is

evident that the learned strategy continues to achieve successful grasps at small

tilt angles, such as 30 degrees. However, when the angle exceeds 45 degrees, grasp

failures occur. This is attributed to the non-parallel orientation of the camera plane

and the plane where the target object is situated, necessitating varying proportions

of x, y, and z velocities; otherwise, failure occurs due to disparate velocity. Never-

theless, our proposed method demonstrates a degree of generality concerning the

angle between the camera plane and the target object plane.

5.7. Comparisons

In order to emphasize the performance of our approach, a comparison with various

state-of-the-art grasping methods is conducted across multiple dimensions, as pre-

sented in Table 2. One of the noteworthy features of our method is its demonstrated

capability for adaptive arm-gripper synergy in both static and dynamic grasping
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Fig. 11. The arm-gripper synergy performance of grasping an orange.

Table 2. Comparisons with other works in proposed items.

[11] [28] [9] [10] Ours

Closed-loop ✓ ✓ × × ✓
Arm-gripper synergy × × × × ✓

Real-time ✓ ✓ × × ✓
No calibration required × ✓ × × ✓
No depth info required × ✓ × × ✓

scenarios, as illustrated in Figure 11. In contrast, other studies do not exhibit this

capacity.

Furthermore, our method does not require precise camera calibration or depth

information during the grasping process. This is a significant advantage over some

other methods, such as baseline method11, which stops updating the real-time grasp-

ing pose when the distance between the hand-eye camera and the target object is

less than 15cm. As a result, the method is likely to fail when the target object moves

within this range. Our method does not suffer from this limitation, making it more

robust and reliable in real-world grasping scenarios.

Note that work28 is a similar work to ours in that it also achieves continuous

servo grasping without requiring precise camera calibration. However, unlike our

method, it does not perform arm-gripper synergy in the grasping process.

As shown in Table 2, our method outperforms other state-of-the-art grasping
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methods in all five aspects of the grasping process. In contrast, some of the other

methods lack one or more of these abilities. Notably, our method’s adaptive arm-

gripper synergy ability is unique among the compared methods. This feature allows

our method to yield adaptive gripper actions shown in Figure 8, resulting in more

natural grasping performance similar to that of humans.

6. Limitation

Our approach enables dynamic and collaborative arm grasping in real-time. How-

ever, it is important to acknowledge certain limitations that warrant consideration.

One limitation stems from the design of the camera integrated into the gripper.

In some instances, the gripper’s placement between the target object and the op-

tical center of the camera can obstruct the camera’s view, potentially leading to

grasp failures. Furthermore, our current control signal is primarily position-based

and does not account for orientation, restricting autonomous grasping to centrally

symmetrical objects. Lastly, while our method facilitates the grasping of various

centrosymmetric objects of different sizes, it necessitates the use of multiple cam-

eras with varying fields of view. These limitations underscore the areas of our focus

for future research.

7. Conclusion

In this study, a novel framework for arm-gripper synergy control through the ac-

quisition of a visual servoing controller is presented. It is demonstrated that the

proposed approach allows for the attainment and grasping of multiple target ob-

jects with a natural, adaptable, and collaborative behavior exhibited between the

manipulator and gripper. The learned visual servoing controller facilitates the real-

ization of dynamic arm-gripper collaborative grasping, even in the absence of precise

calibration and depth information.

Acknowledgements

This work is supported by the National Natural Science Foundation of China

(U2013602, 52075115, 51521003, 61911530250), National Key R&D Program of

China(2020YFB13134), Self-Planned Task (SKLRS202001B, SKLRS202110B) of

State Key Laboratory of Robotics and System(HIT), Shenzhen Science and Tech-

nology Research and Development Foundation (JCYJ20190813171009236), Basic

Research on Free Exploration of Shenzhen Virtual University Park (2021Szvup085)

and Basic Scientific Research of Technology (JCKY2020603C009). Qiang Li is sup-

ported by the “DEXMAN” project funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation)-project number(410916101)

References
1. Maskrcnn K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask r-cnn, in Proceedings of

the IEEE International Conference on Computer Vision (ICCV, 2017), pp. 2980-2988.



December 13, 2023 12:24 WSPC/INSTRUCTION FILE output

Learning an Image-based Visual Servoing Controller for Object Grasping 19

2. Bohg J, Barck-Holst C, Huebner K, et al. Towards grasp-oriented visual perception for
humanoid robots[J]. International Journal of Humanoid Robotics, 2009, 6(03): 387-434.

3. A. Provenzale, F. Cordella, L. Zollo, A. Davalli, R. Sacchetti, and E. Guglielmelli, A
grasp synthesis algorithm based on postural synergies for an anthropomorphic arm-
hand robotic system, Proceedings of the IEEE RAS and EMBS International Confer-
ence on Biomedical Robotics and Biomechatronics(IEEE, 2014), pp. 958–963.

4. J. Bohg, A. Morales, T. Asfour, and D. Kragic, Data-driven grasp synthesis-a survey,
IEEE Transactions on Robotics 30(304) (2014) 289–309.

5. S. Wang, W. Hu, L. Sun, X. Wang, and Z. Li, Learning adaptive grasping from human
demonstrations, IEEE/ASME Transactions on Mechatronics 10 (2022) 3865-3873.

6. Kleeberger, Kilian, Richard Bormann, Werner Kraus, and Marco F. Huber. A survey
on learning-based robotic grasping. Current Robotics Reports 1 (2020): 239-249

7. Chen, Pengzhan, and Weiqing Lu. Deep reinforcement learning based moving object
grasping. Information Sciences 565 (2021) 62-76.

8. Brock O, Fagg A, Grupen R, et al. A framework for learning and control in intelligent
humanoid robots[J]. International Journal of Humanoid Robotics, 2005, 2(03): 301-336.

9. J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Gold-
berg, Learning ambidextrous robot grasping policies, Science Robotics, 4(26) (2019),
p.eaau4984

10. Fang, Hao-Shu, Chenxi Wang, Minghao Gou, and Cewu Lu. Graspnet-1billion: A
large-scale benchmark for general object grasping. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR, 2020), pp. 11444-11453.

11. Morrison, Douglas, Peter Corke, and Jürgen Leitner. Learning robust, real-time, re-
active robotic grasping. The International journal of robotics research 39(2-3) (2020)
183-201.

12. A. A. Shahid, L. Roveda, D. Piga, and F. Braghin, Learning continuous control actions
for robotic grasping with reinforcement learning, Conference Proceedings - IEEE Inter-
national Conference on Systems, Man and Cybernetics (IEEE, 2020), pp. 4066–4072.

13. Y. Y. Tsai, H. Xu, Z. Ding, C. Zhang, E. Johns, and B. Huang, Droid: Minimizing
the reality gap using single-shot human demonstration, IEEE Robotics and Automation
Letters, 6(4) (2021), 3168–3175.
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