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Abstract. Inferring physical properties can significantly enhance robotic
manipulation by enabling robots to handle objects safely and efficiently
through adaptive grasping strategies. Previous approaches have typically
relied on either tactile or visual data, limiting their ability to fully cap-
ture properties. We introduce a novel cross-modal perception framework
that integrates visual observations with tactile representations within a
multimodal vision-language model. Our physical reasoning framework,
which employs a hierarchical feature alignment mechanism and a refined
prompting strategy, enables our model to make property-specific predic-
tions that strongly correlate with ground-truth measurements. Evaluated
on 35 diverse objects, our approach outperforms existing baselines and
demonstrates strong zero-shot generalization.

Keywords: tactile perception, visual-tactile fusion, physical property
inference, multimodal integration, robot perception

1 Introduction

Accurate perception of object physical properties is fundamental for robots
to perform reliable manipulation in unstructured environments. While humans
seamlessly integrate visual and tactile cues to infer material characteristics [1],
robotic systems often struggle to achieve comparable performance due to limita-
tions in unimodal sensing. Traditional vision-based approaches, though effective
for geometric perception, frequently fail to capture intrinsic material attributes
such as hardness, elasticity, and surface roughness [2]. Conversely, tactile sens-
ing provides rich contact information but requires physical contact — a signifi-
cant drawback when handling delicate or unknown objects [3]. Recent advances
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Fig. 1: Through visual and tactile image input and human language interaction,
our model infers and gives detailed physical properties of the duck toy and gives
specific physical property scores as specified by the structured scoring guidelines.

in multimodal learning have shown significant potential for integrating tactile
perception with language models to enhance physical reasoning capabilities [4].
However, two fundamental limitations persist: (1) Sensory constraints in tac-
tile systems: Current tactile sensors offer insufficient data capture for compre-
hensive material characterization, particularly when handling objects with com-
plex composite structures; and (2)Underutilized language model potential:
Existing implementations fail to fully leverage the reasoning capacity of language
models through strategic prompting and effective multimodal fusion. To address
these challenges, we propose an enhanced multimodal framework with two core
innovations that enable physical property inference for robotic grasping tasks. As
illustrated in Fig.1, our vision-tactile-language integration empowers the robotic
arm to accurately estimate critical material characteristics (e.g., hardness, elas-
ticity, surface roughness), allowing it to grasp the duck toy while preserving its
structural integrity. The framework’s technical advancements include:

– Proactive Perception Architecture: By fusing visual cues with historical
tactile information, our model is capable of predicting important physical
attributes—such as hardness, elasticity, and roughness—prior to contact.

– Structured Reasoning Prompts: A staged reasoning protocol that guides
multimodal language models through object recognition, material analysis,
and property quantification to enhance inference accuracy.

2 Related Work

2.1 Tactile Perception in Robotics

Tactile sensing has become essential for robotic manipulation, with various sen-
sor technologies capturing detailed contact information [5,6]. Vision-based tactile
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sensors (e.g., GelSight [7], GelSlim [8]) excel at local texture and hardness esti-
mation but are inherently limited in capturing global object properties due to re-
stricted sensing areas. Recent tactile representation learning approaches leverag-
ing deep networks, including tactile-kinematic fusion for shape reconstruction [9]
and self-supervised tactile-visual alignment [10], have improved property estima-
tion. Nevertheless, each modality individually faces limitations: tactile sensors
suffer from partial observability and difficulties in dynamic property inference,
whereas vision alone lacks fine-grained contact information. Previous works have
addressed some of these issues by combining visual and tactile sensing [11–13].
However, our approach further enhances this multimodal integration, effectively
leveraging visual priors to enrich tactile perception.

2.2 Multimodal Fusion Approaches

The integration of tactile and visual modalities has evolved through several fu-
sion paradigms to address limitations inherent in single-modal perception. Early
fusion methods [14], which directly concatenate raw tactile and visual features,
face performance degradation due to modality misalignment. Subsequently de-
veloped late fusion techniques [15] process each modality independently, yet they
are limited in capturing essential cross-modal correlations required for inferring
complex physical properties. More advanced hybrid methods adopt intermedi-
ate fusion strategies, including contrastive learning for feature alignment [16]
and attention mechanisms for adaptive modality weighting [17]. However, these
techniques typically rely on extensive paired training datasets, potentially limit-
ing their generalization capabilities when encountering novel objects or proper-
ties.Building upon these limitations, our research introduces a novel hierarchical
prompting strategy utilizing pre-trained vision-language models as robust knowl-
edge priors. This framework implements property-specific fusion rules, effectively
enabling zero-shot generalization through structured physical reasoning.

2.3 Physical Property Reasoning with Large Models

Recent advances in large vision language models have demonstrated their ca-
pability for physical property reasoning by leveraging multimodal inputs and
commonsense knowledge [18]. For instance, GPT-4V has been shown to infer
liquid viscosity by analyzing time-series plots of force/torque sensor data [19],
while OCTOPI [20] predicts material properties like hardness and roughness
from tactile images through specialized prompting strategies. However, exist-
ing methodologies predominantly focus on passive interpretation of sensory data
without actively guiding the reasoning processes and rely on generalized multi-
modal fusion rather than explicitly structured, property-centric prompting. Our
research substantially advances this direction by proposing a hierarchical reason-
ing framework that systematically decomposes physical property inference into
sequential, interpretable stages-object recognition, material analysis, and quan-
titative assessment. Through carefully designed property-specific prompts, our
approach actively directs model attention toward relevant sensory cues critical
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to each property, such as pressure response for hardness, deformation patterns
for elasticity, and surface textures for roughness evaluation, thereby improving
reasoning accuracy and interpretability.

3 Methodology

In our method, we introduce a multimodal model integrating textual, visual,
and tactile data for comprehensive object analysis. As depicted in Fig. 2, the
input query is parsed into dedicated modality-specific pathways. Text is tok-
enized and embedded via a language tokenizer, while visual and tactile images
are encoded using ViT-L/14 [21] and projected into a shared embedding space
using modality-specific MLP layers. Special markers (<img start>, <img end>,
<tact start>, <tact end>) clearly delineate embedding boundaries. These em-
beddings are concatenated with textual features and fed into a large language
model (Vicuna-7B [22]), allowing joint multimodal attention to generate detailed
object property descriptions, such as hardness, elasticity, and roughness.

Fig. 2: The architecture of a multimodal large model. After embedding and to-
kenizing the object image and tactile image alongside the text, the resulting
vectors are concatenated and input into the large language model.



Cross-Modal Robotic Perception for Physical Property Inference 5

3.1 Vision Processing

Fig. 3: Vision processing pipeline. The image is partitioned into multiple regions
by the segmentation module, after which the encoder extracts a feature matrix
that is flattened into a one-dimensional vector and fed into the LLM(see Fig.2).

We employ CLIP [21] to process visual information, leveraging a visual en-
coder (ViT-L/14) trained to learn shared representations between images and
text. As shown in Fig.2 , the overall multimodal architecture incorporates image
embeddings alongside textual inputs into the LLM. To align dimensionality and
semantics with the LLM’s native embedding space, we adopt the pre-trained
linear transformation layer from LLaVA [23], which projects the penultimate
output of CLIP into the language model’s word embedding space.

In addition to extracting features from the CLIP visual encoder, we insert
two specialized boundary tokens, <img start> and <img end>, around image-
derived embeddings. These tokens (initialized by semantic averaging of descrip-
tive phrases and then frozen during fine-tuning) explicitly separate visual content
from text inputs, thus assisting the model in distinguishing modalities. As de-
picted in Fig.3, we further segment the image into multiple regions, extract a
feature matrix from each region, and flatten it into a one-dimensional represen-
tation to feed into the LLM.

3.2 Tactile Processing

To incorporate tactile perception and enhance physical reasoning, we adopt the
OCTOPI framework. This framework employs a CLIP-based [21] tactile encoder
that processes tactile data and fuses it with the LLM, enabling a deeper under-
standing of object properties. Specifically, the tactile encoder extracts features
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from a sequence of tactile images, encoding both spatial and temporal informa-
tion. As shown in Fig.4, we add positional encodings to these sequential features
to preserve the order and timing of tactile interactions. By training on physics-
based datasets with annotated tactile videos and physical property labels, the
model acquires rich, tactile-aware representations that improve performance in
tasks such as object property prediction and scenario reasoning.

Fig. 4: A sequence of tactile images is first processed by the tactile encoder to
extract feature representations. The extracted features are then transformed into
a structured feature vector, followed by the addition of positional embeddings
to encode temporal dependencies.

3.3 Multimodal Fusion through Feature Concatenation

After we obtain the projected object image feature vector (Fo), the projected
tactile image feature vector (Ft), and the linguistic feature vector (Fl) from
the LLM’s embedding space, we concatenate them channel-wise into a unified
representation:

Fconcat = [Fo ; Ft ; Fl ].

This fused vector Fconcat retains distinguishing features from each modality while
enabling cross-modal interaction. It then serves as the input to downstream mod-
ules for tasks such as multimodal reasoning, classification, or object recognition,
thereby capturing both the physical and semantic attributes of the target object.

3.4 Refined Prompting Strategy for Physical Property Scoring

We designed a structured prompt to enable comprehensive physical property
analysis using multimodal (visual and tactile) data. The prompt clearly defines
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Table 1: Physical Property Rating Scales
Property Score Range Characterization Example Materials

Hardness

1–2 Extremely soft Cotton, sponge
3–4 Soft Rubber ball, soft plastic toy
5–6 Medium Plastic container, shoe sole
7–8 Hard Wood, ceramic plate
9–10 Extremely hard Metal, diamond

Elasticity

1–2 Minimal elasticity Clay, dry sponge, wooden ruler
3–4 Low elasticity Rubber eraser, hard plastic, book cover
5–6 Medium elasticity Foam ball, silicone, thick rubber mat
7–8 High elasticity Rubber band, bouncy ball, yoga mat
9–10 Maximum elasticity Trampoline surface, latex sheet, inflated balloon

Roughness

1–2 Extremely smooth Glass, polished marble
3–4 Smooth Plastic surface, ceramic mug
5–6 Medium texture Paper, leather, cardboard
7–8 Rough Sandpaper, concrete, bark of a tree
9–10 Extremely rough Gravel, coarse fabric, pumice stone

the analysis goal, emphasizing material-aware reasoning and avoiding generic
responses. It guides the model through two phases: visual-based object identifi-
cation (color, shape, texture) and combined material-tactile property evaluation.
A 10-point Likert scale quantifies three essential properties (Table 1), enhancing
nuanced differentiation. Outputs include justified object identification and prop-
erty scores with material rationales. Constraints ensure balanced score usage and
material-focused reasoning.

When the user inputs a request along with an image, the request is en-
coded by the text encoder together with the prompt. Simultaneously, the ob-
ject image and the tactile image are processed by their respective encoders.
To facilitate proper identification and integration of different modalities, spe-
cial tokens <img start>, <img end>, <tact start>, and <tact end> are used
to mark the boundaries of visual and tactile features. This design enhances mul-
timodal integration by associating visual and tactile information to provide a
more comprehensive object representation. By unifying feature alignment, it im-
proves cross-modal compatibility, while deep semantic understanding optimizes
adaptation to complex scenarios.

4 Experiments

4.1 Hardware

To evaluate our cross-modal perception framework, we conducted comprehensive
experiments using a robotic system equipped with a GelSight Mini tactile sensor
for high-resolution contact data acquisition and a RealSense D410 camera for
visual perception. We selected 35 common household objects (Fig.5) spanning
diverse materials (plastic, metal, wood, rubber, etc.) and geometric properties.
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Fig. 5: Object set of 35 common household items, spanning nine major mate-
rial categories—plastic, rubber, metal, wood, ceramic, glass, foam, paper, and
textile—to validate the generalizability of the experimental data across diverse
materials, for evaluating multimodal models in physical property reasoning.

Fig. 6: During the experiment, we selected 35 objects in the laboratory, measured
their roughness, hardness and elastic modulus, and drew the histogram shown
in the figure above.
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Each object was annotated with ground truth physical properties measured by
professional instruments: hardness (Shore scale) with PosiTector SHD, elastic
modulus with C610H Auto Tensile Tester, and surface roughness (Ra) with
RUGOSURF 20 roughness tester (Fig.6).

4.2 Data Collection

The data collection process was designed to systematically capture multimodal
information for comprehensive physical property analysis. For tactile data ac-
quisition, we employed a GelSight Mini sensor operating at 20 fps to record
six-second videos of each interaction, encompassing the complete contact cycle
from approach to retraction. These videos were subsequently sampled at 250ms
intervals to obtain representative frames while maintaining temporal coherence.
Ground truth measurements were obtained following established protocols to en-
sure accuracy and repeatability. Hardness measurements were conducted using
a PosiTector SHD durometer, with three tests performed at predetermined lo-
cations on each object and a standardized 5-second dwell time. Elastic modulus
characterization was performed using a C610H tensile tester, analyzing stress-
strain responses in the linear deformation regime. Surface roughness was quan-
tified with a RUGOSURF 20 profilometer, executing multiple scans per object
with carefully controlled parameters.

4.3 Experimental results

To evaluate our model, we employed designed prompts to assess the physical
properties of 35 objects through both our method and the Octopi framework [20],
while simultaneously obtaining ground truth measurements of the objects’ at-
tributes using specialized instrumentation. Specifically, true hardness was mea-
sured using a Shore hardness tester, the elastic modulus was determined using a
universal material testing machine, and surface roughness was quantified using
a portable surface roughness instrument. These instruments ensured that our
ground truth data were both accurate and reproducible.

Following data collection, we normalized each dataset and computed Spear-
man correlation coefficients between the model scores and the ground truth
measurements. These analyses allowed us to quantitatively assess the predictive
accuracy of the physical property inference for hardness, elasticity, and rough-
ness, highlighting significant differences between our approach and the baseline
Octopi method. As can be seen from the Table 2, the correlation coefficients be-
tween the models and ground truth measurements reveal significant differences
in the performance of our model compared to Octopi across the three physical
attributes: hardness, elasticity, and roughness.

For hardness, our model exhibits a moderate and statistically significant posi-
tive correlation with the ground truth (Spearman’s ρ= 0.501, p = 0.005), demon-
strating its capability to integrate visual and tactile cues effectively. In compar-
ison, the pure vision model yields a weaker correlation (ρ = 0.307, p = 0.099),
failing to reach statistical significance. Interestingly, both Octopi (fine-grained)
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Table 2: Zero-shot evaluation: Comparison of Spearman’s rank correlation be-
tween models and ground truth (Octopi as the tactile-only model; Octopi-ViTaL
is our model)

Attribute Method Correlation Coefficient P-value

Hardness

Octopi-ViTaL 0.501 0.005
Octopi-ViTaL (vision only) 0.307 0.099
Octopi (fine-grained) 0.307 0.099
Octopi (original) 0.015 0.935

Elasticity

Octopi-ViTaL 0.530 0.003
Octopi-ViTaL (vision only) 0.452 0.012
Octopi (fine-grained) 0.053 0.781
Octopi (original) -0.060 0.753

Roughness

Octopi-ViTaL 0.643 0.0001
Octopi-ViTaL (vision only) 0.413 0.023
Octopi (fine-grained) -0.010 0.959
Octopi (original) 0.118 0.534

and Octopi (original) perform worse: while the fine-grained version—Octopi uses
our prompt to score the physical properties of objects.—achieves a similar cor-
relation to pure vision (ρ = 0.307, p = 0.099), the original version—which relies
on Octopi’s predefined three-level classification system—shows virtually no cor-
relation with the ground truth (ρ = 0.015, p = 0.935). These results confirm
that our multimodal model surpasses both unimodal and tactile-only baselines,
and benefits significantly from combining sensory modalities.

In the case of elasticity, because elastic modulus is inversely proportional to
perceived “elasticity,” we report the absolute value of Spearman’s ρ to reflect
predictive strength regardless of sign. Our model achieves a Spearman correlation
of 0.530 (p = 0.003), clearly outperforming the vision-only baseline (ρ = 0.452,
p = 0.012). Meanwhile, Octopi (fine-grained) shows a negligible correlation (ρ
= 0.053, p = 0.781), and Octopi (original) displays a weak negative trend (ρ =
-0.060, p = 0.753). The poor performance of both Octopi variants indicates that
tactile input alone lacks sufficient expressiveness for elasticity estimation, even
when adapted to more descriptive prompts.

The comparison is most striking for roughness, where our model achieves a
strong and statistically robust correlation with ground truth (ρ = 0.643, p =
0.0001). Although the pure vision model also yields a moderate correlation (ρ =
0.413, p = 0.023), it falls short of our model’s performance. Octopi (fine-grained)
shows no meaningful correlation (ρ = -0.010, p = 0.959), and the original Octopi
version fares only slightly better (ρ = 0.118, p = 0.534), with neither result statis-
tically significant. This further demonstrates that a tactile-only approach—even
with fine-tuned prompts or structured rating schemes—fails to adequately cap-
ture surface texture without visual context.
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When applied in a zero-shot fashion to our new setup, the pretrained Octopi
model failed to produce meaningful predictions (e.g., Spearman’s ρ < 0.1; see
Table 2). This failure arises from multiple domain shifts: we use a GelSight Mini
with different resolution and calibration compared to Octopi’s original high-
resolution GelSight; lighting and camera angles differ. These combined shifts in
sensor modality, resolution, and lighting prevent Octopi from succeeding zero-
shot on our data.

Overall, these results highlight the clear advantage of our multimodal ap-
proach. By fusing vision and touch, our model consistently achieves statistically
significant and higher correlations with ground truth across all three physical at-
tributes. In contrast, both the vision-only and tactile-only methods—particularly
the Octopi framework in its original and adapted forms—fall short, reinforcing
the value of cross-modal integration in physical property understanding.

5 Conclusion

We proposed a novel approach to enhance tactile perception through visual com-
pensation and optimized prompt engineering, leveraging VLM for cross-modal
robotic perception. By effectively integrating visual priors and structuring lan-
guage model interactions, our method overcomes tactile-only limitations and
significantly improves physical property inference, especially in roughness es-
timation. The success of our framework underscores the value of multimodal
reasoning with VLMs for robotic applications. Future work will explore apply-
ing this multimodal tactile-visual approach to robotic grasping tasks involving
adaptive manipulation of objects with different material properties.
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